• Title/Summary/Keyword: 활성 산소종

Search Result 192, Processing Time 0.025 seconds

Anti-inflammatory Effects of Flavokavain C from Kava (Piper methysticum) Root in the LPS-induced Macrophages (LPS로 유도된 대식세포에서 카바뿌리로부터 분리한 Flavokavain C의 항염증 효과)

  • Park, Chung;Han, Jong-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.311-320
    • /
    • 2016
  • Kava (Piper methysticum, P. methysticum) is used as traditional herbal medicine for urogenital diseases, rheumatisms, gastrointestinal problems, respiratory irritations, and pulmonary pains. We identified a flavokavain C (FKC) from P. methysticum, which showed anti-inflammatory activity on nuclear factor ${\kappa}B$ (NF-${\kappa}B$)-dependent nitric oxide (NO) production and expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. FKC inhibited accumulation of reactive oxygen species (ROS), such as hydrogen peroxide, and was able to dose-dependently reduce the LPS-induced NO production and the expression of various inflammation-associated genes (iNOS, IL-$1{\beta}$, IL-6) through inhibition of NF-${\kappa}B$ and MAPKs (ERK and JNK). In conclusion, these results indicate that FKC may have the potential to prevent inflammation process including NF-${\kappa}B$ and MAPKs pathways, and it could be applicable to functional cosmetics for anti-inflammation and antioxidant properties.

Bacterial- and Archaeal Communities in Variously Environmental Conditioned Basins of Several Wastewater Treatment Plants (다양한 환경 조건의 하수처리시설 반응조 내 세균 및 고세균 군집)

  • Cho, Sunja;Ha, Tal Soo;Lee, Young Ok
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.674-684
    • /
    • 2020
  • To investigate the differences of bacterial- and archaeal communities depending on kind of wastewater (municipal/livestock) and on treating conditions of basins, sludges were sampled from 10 basins of 3 municipal wastewater treatment plants(WWTP) with A2O and a activated sludge sample from a livestock WWTP. The metagenomic DNAs of the sludge samples were extracted and amplified with primers, 27F/518R for bacteria and Arch519F/A958R for archaea, and pyrosequenced with Roche 454 GS-FLX Titanium. As results, the bacterial communities in basins of municipal WWTPs were quite different from those of livestock WWTP, but within the same municipal WWTP their community structures were similar to each other regardless of different environmental conditions such as O2. And their archaeal communities resulted from anaerobic·anoxic basins were clustered only within communities originated from the same WWTP. Furthermore Seo-bu WWTP with high bacterial diversity and species richness performed better N/P-removal compared to the orther WWTPs.

Theory & Design of Electrocatalyst for Polymer Electrolyte Membrane Fuel Cell (고분자 연료전지용 전기촉매의 이론과 설계)

  • Yoo, Sung-Jong;Jeon, Tae-Yeol;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.11-25
    • /
    • 2009
  • Fuel cells are expected to be one of the major clean new energy sources in the near future. However, the slow kinetics of electrocatalytic hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR), and the high loading of Pt for the anode and cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this review paper, a new approach was developed for designing electrocatalysts for the HOR and ORR in fuel cells. It was found that the electronic properties of Pt could be fine-tuned by the electronic and geometric effects introduced by the substrate alloy metal and the lateral effects of the neighboring metal atoms. The role of substrate was found reflected in a volcano plot for the HOR and ORR as a function of their calculated d-band centers. This paper demonstrated a viable way to designing the electrocatalysts which could successfully alleviate two issue facing the commercializing of the fuel cell-the cost of electrocatalysts and their efficiency.

Degradation of Pesticides in Wastewater Using Plasma Process Coupled with Photocatalyst (광촉매를 병합한 플라즈마 공정을 이용한 폐수에 함유된 살충제 분해)

  • Jang, Doo Il;Kim, Kil-Seong;Hyun, Young Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.87-92
    • /
    • 2013
  • Nonthermal plasma hybridized with photocatalysts is proven to be an effective tool to degrade toxic organics in wastewater. In this study, a specially designed dielectric barrier discharge (DBD) plasma system combined with photocatalysts was applied to decompose pestiticides such as dichlorovos, carbofuran and methidathon, which are frequently used in the golf courses and the orange plantations. The degradations of the pesticides in single and coupled systems were evaluated. The single system was used with ozone plasma which consisted of electrons, radicals, ions produced by oxygen gas and air, with and without ultra-violet (UV) irradiation, respectively. The coupled systems utilized the air-derived ozone plasma combined with zinc oxide, titanium dioxide and graphite oxide photocatalyst activated by UV. The graphite oxide was synthesized by a modified Hummer's method and characterized using FTIR spectrometer. It was elucidated that the plasma reaction with graphite oxide (0.01 g/L) brought about almost 100% of degradation degrees for dichlorovos and carbofuran in 60 min, as compared with the performances showed by no catalyst condition. The photocatalyst-hybridized plasma in the presence of UV irradiation was proven to be an effective alternative for degrading pesticides.

표고버섯 균사체 배양 및 그 추출물의 생리학적 특성

  • 이병우
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 1994.07a
    • /
    • pp.7-8
    • /
    • 1994
  • 한국산 표고버섯 균사체를 액체배양하여 천연항암물질로 알려진 단백다당체를 추출한 후 그 물질의 특성에 대하여 검토하였다. 균사체의 최적 재양조건을 TGY배지로 조사한 바 온도 $25^{\circ}C$, 배양초기 pH4.0, 교반속도 300rpm, 균사배지 접종량을 10.0%로 하고 산소 통기량을 1.0volume of ait/volume of medium/mimute으로 하였을때 가장 양호한 조건이였으며, 대량생산 하기 위한 SCM배지에서 최적의 C/N비는 13.1오써 7일간 배양하였을때 18.8g/L의 균사령을 얻었으며, 이때 생산수율은 0.46으로 나타났다. 발효가 끝난 배양액에서 균사, 여액 그리고 배양액의 전체에서 단백다당체를 분리한 결과 각 분획에서 단백다당체가 각각 0.55%, 0.12%, 0.69%가 회수되어 배양액 전체에서 단백다당체를 추출하는 것이 바람직하며, 추출방법으로 열수추출, glass bead추출 및 cellulasa처리를 하여 단백다당체의 수율을 비교한 결과 0.25-0.5mm glass nead로 30분간 균사체를 분쇄한 다음 열수추출을 1시간을 하였을때 990mg/100ml의 단백다당체를 얻을 수 있었다. 고단백다당체를 1차 단백질 가수분해 효소로 분해하고, EDAE cellulose 및 Sepadex G-100 column chromatography로 정제한 후, TLC/FLD, ultracentrifugation한 결과 순수한 물질임을 알 수 있었다. 단백다당체의 항암효과 조사중 in vitro배양에서 $P_{388}$$L_{1210}$에 대한 단백다당체의 활성단위 1 unit는 1mg정도였으며, 인체의 장암세포인 HCT-48, HRT-18, HT-29 밀 간암세포인 Hep G2 대한 생육저해 단위는 각각 4.4, 3.6, 6.6, 2.6mg이었다. HCT-48과 Hep G2 세포의 크기 분포도는 대조군에 비하여 시간이 경과함에 따라, 그리고 단백다당체의 농도가 증가함에 따라 peak가 작은 size 쪽으로 이동하였다. 또, 단백다당체를 첨가 배양한 HCT-48과 Hep G2세포의 현미경 관찰에서 본래의 암세포 형태가 변형되고 크기가 감소하며 세포사이의 경계막이 흐트러지면서 세포수가 감소하고 사멸하였다. In vivo실험에서는 대조군보다 단백다당체를 첨가한 군에서 항체 형성능력이 대조군에 비하여 형질세포가 2배로 증가하였다. 단백다당체의 화학적 성분 분석에서 다당함량은 46.1%이면 구성다당류는 glucose, galactose, mannose, xylose로 구성되었고 단백질의 함량은 7.28%이며, 구성아미노산은 15종의 아미노산으로 되었다. 또 무기물은 Na, K, Zn, Ca등의 순으로 이루어 짐을 알 수 있었다.

  • PDF

Mechanism of Growth Inhibition in Herbicide-Resistant Transgenic Rice Overexpressing Protoporphyrinogen Oxidase (Protox) Gene (Protoporphyrinogen Oxidase (Protox) 유전자 과다발현 제초제 저항성 형질전환 벼의 생육저해 기작)

  • Kuk, Yong-In;Shin, Ji-San;Yun, Young-Beom;Kwon, Oh-Do
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.122-134
    • /
    • 2010
  • We investigated the levels of resistance and accumulation of terapyrroles, reactive oxygen species, lipid peroxidation, and antioxidative enzymes for reasons of growth reduction in herbicide-transgenic rice overexpressing Myxococcus xanthus, Arabidopsis thaliana, and human protoporphyrinogen oxidase (Protox) genes. The transgenic rice overexpressing M. xanthus (MX, MX1, PX), A. thaliana (AP31, AP36, AP37), and human (H45, H48, H49) Protox genes showed 43~65, 41~72 and 17~70-fold more resistance to oxyfluorfen, respectively, than the wild type. Among transgenic rice lines overexpressing Protox genes, several lines showed normal growth compared with the wild type, but several lines showed in reduction of plant height and shoot fresh weight under different light conditions. However, reduction of plant height of AP37 was much higher than other lines for the experimental period. On the other hand, the reduction of plant height and shoot fresh weight in the transgenic rice was higher in high light condition than in low light condition. Enhanced levels of Proto IX were observed in transgenic lines AP31, AP37, and H48 at 7 days after seeding (DAS) and transgenic lines PX, AP37, and H48 at 14 DAS relative to wild type. There were no differences in Mg-Proto IX of transgenic lines except for H41 and H48 and Mg-Proto IX monomethyl ester of transgenic lines except for MX, MX1, and PX. Although accumulation of tetrapyrrole intermediates was observed in transgenic lines, their tetrapyrrole accumulation levels were not enough to inhibit growth of transgenic rice. There were no differences in reactive oxygen species, MDA, ALA synthesizing capacity, and chlorophyll between transgenic lines and wild type indicating that accumulated tetrapyrrole intermediate were apparently not high enough to inhibit growth of transgenic rice. Therefore, the growth reduction in certain transgenic lines may not be caused by a single factor such as Proto IX, but by interaction of many other factors.

Studies of Exercise-Induced Allergy Anaphylaxis Mechanisms and the Effects of Vitamin C and Catalase Supplementation in Exercise-Induced Allergy Anaphylaxis Models (운동 유발성 알레르기 질환분석 및 비타민 C와 catalase 투여 효과 분석)

  • Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.511-518
    • /
    • 2010
  • Exercise-induced anaphylaxis (EIA) is defined as the onset of allergic symptoms during, or immediately after, exercise, the clinical signs being various degrees of urticaria, angioedema, respiratory and gastrointestinal signs, and even anaphylactic shock. Food-dependent exercise-induced anaphylaxis (FDEIA) is a specific variant of exercise-induced anaphylaxis that requires both vigorous physical activity and the ingestion of specific foods within the preceding several hours. To describe the physiopathologic mechanism, etiologic factors, and clinical manifestations, we evaluated the supplementation of vitamin C and catalase on spleen index, proliferation assay, ROS, and ASAS in sensitized and exercise trained mice. The results were as follows: Spleen index showed the highest level in the ST12 group compared to other groups; this level increased in a time dependent manner and in significant amounts. In proliferation assay of Med and OVA, the ST12 group showed the highest level compared to other groups; this level also increased in a time dependent manner. On the other hand, spleen ROS did not show a statistically significant difference, and peritoneal ROS showed the highest level in the ST12 group. ASAS showed the highest level in the ST12 compared to the S; this was also in a time dependent manner and in significant amounts. From the results, we chose the ST9 and ST12 groups to evaluate allergy anaphylaxis with supplementation of Vitamin C and catalase. In both the ST9 and ST12 groups, peritoneal ROS and ASAS were lower in vitamin C treatment group than in the catalase treatment group. This was a statistically significant difference. From the results, allergy anaphylaxis showed a higher level in the long trained group than in the short trained group. Also, treatment with vitamin C was more effective in lowering allergy anaphylaxis than catalase treatment.

Properties of ultra-thin silicon oxynitride films using plasma-assisted oxynitridation method (플라즈마 처리 기법을 이용한 초박형 실리콘 옥시나이트라이드 박막의 특성)

  • Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.260-260
    • /
    • 2009
  • 초박형 절연막은 현재 다양한 전자소자의 제작과 향상을 위하여 활용되고 있으며, 일반적인 화학 기상 증착 방법으로는 균일도를 확보하기 어려운 문제점을 가지고 있다. 본 논문에서는 디스플레이의 구동소자로 활용되는 박막 트랜지스터의 특성 향상과 비휘발성 메모리 소자의 터널링 박막에 응용하기 위하여 초박형 실리콘 옥시나이트라이드 박막의 증착과 이의 특성을 분석하였다. 실리콘 옥시나이트라이드 박막은 실리콘 산화막에 질소가 주입되어 있는 형태로 실리콘 산화막과 실리콘 계면상에 존재하는 질소는 터널링 전류와 결함 형성을 감소시키며, bulk 내에 존재하는 질소는 단일 실리콘 산화막에 비해 더 두꺼운 박막을 커패시턴스의 감소없이 이용할 수 있는 장점이 있다. 플라즈마 처리 기법을 이용하였을 경우에는 초박형의 균일한 박막을 얻을 수 있으며, 본 연구에서는 이산화질소 플라즈마를 이용하여 활성화된 질소 및 산소 라디칼들이 실리콘 계면을 개질하여 초박형 실리콘 옥시나이트라이드 박막을 형성활 수 있다. 플라즈마 처리 시간과 RF power의 변화에 따라 형성된 실리콘 옥시나이트라이드 박막의 두께 및 광학적 특성은 엘립소미터를 통하여 분석하였으며, 전기적인 특성은 금속-절연막-실리콘의 MIS 구조를 형성하여 커패시턴스-전압 곡선과 전류-전압 곡선을 사용하여 평가하였다. 이산화질소 플라즈마 처리 방법을 사용한 실리콘 옥시나이트라이드 박막을 log-log 스케일로 시간과 박막 두께의 함수로 전환해보면 선형적인 증가를 나타내며, 이는 초기적으로 증착률이 높고 시간이 지남에 따라 두께 증가가 포화상태에 도달함을 확인할 수 있다. 실리콘 옥시나이트라이드 박막은 초기적으로 산소의 함유량이 많은 형태의 박막으로 구성되며, 시간의 증가에 따라서 질소의 함유량이 증가하여 굴절률이 높고 더욱 치밀한 형태의 박막이 형성되었으며, 이는 시간의 증가에 따라 플라즈마 챔버 내에 존재하는 활성종들은 실리콘 박막의 개질을 통한 실리콘 옥시나이트라이드 박막의 두께 증가에 기여하기 보다는 형성된 박막의 내부적인 성분 변화에 기여하게 된다. 이산화질소 플라즈마 처리 시간의 변화에 따라 형성된 박막의 정기적인 특성의 경우, 2.3 nm 이상의 실리콘 옥시나이트라이드 박막을 가진 MIS 구조에서 accumulation과 inversion의 특성이 명확하게 나타남을 확인할 수 있다. 아산화질소 플라즈마 처리 시간이 짧은 실리콘 옥시나이트라이드 박막의 경우 전압의 변화에 따라 공핍영역에서의 기울기가 현저히 감소하며 이는 플라즈마에 의한 계면 손상으로 계면결합 전하량이 증가에 기인한 것으로 판단된다. 또한, 전류-전압 곡선을 활용하여 측정한 터널링 메카니즘은 2.3 nm 이하의 두께를 가진 실리콘 옥시나이트라이드 박막은 직접 터널링이 주도하며, 2.7 nm 이상의 두께를 가진 실리콘 옥시나이트라이드 박막은 F-N 터널링이 주도하고 있음을 확인할 수 있다. 즉, 2.5 nm 두께를 경계로 하여 실리콘 옥시나이트라이드 박막의 터널링 메카니즘이 변화함을 확인할 수 있다. 결론적으로 2.3 nm 이상의 두께를 가진 실리콘 옥시나이트라이드 박막에서 전기적인 안정성을 확보할수 있어 박막트랜지스터의 절연막으로 활용이 가능하며 2.5 nm 두께를 경계로 터널링 메커니즘이 변화하는 특성을 이용하여 비휘발성 메모리 소자 제작시 전하 주입 및 기억 유지 특성을 확보를 위한 실리콘 옥시나이트라이드 터널링 박막을 효과적으로 선택하여 활용할 수 있다.

  • PDF

Clean-up of the Crude Oil Contaminated Marine Sediments Through Biocarrier-Mediated Bioaugmentation (생물담체 활용 생물접종에 의한 원유로 오염된 해양토양의 정화)

  • Ekpeghere, Kelvin I.;Bae, Hwan-Jin;Kwon, Sung-Hyun;Kim, Byung-Hyuk;Park, Duck-Ja;Kim, Hee-Shik;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.354-361
    • /
    • 2009
  • This study was carried out to develop an effective biocarrier-mediated bioaugmentation technology which will be useful for remediation of the crude oil-contaminated marine sediments. Enrichment of several microbial communities was made from several oil-polluted seashore sites and the two distinctively functional consortia have been successfully selected. These two consortia were grown together and used to manufacture the microbial agents for bioaugmentation of marine sediments polluted with crude oil. The most dominant species in the mixed culture was identified as Alcanivorax borkumensis based on pure culture and DGGE analysis. Bioaugmentation of oil-polluted marine sediments with the microbial agent MA-2 formulated using the mixed culture and biocarriers (activated carbon and minerals) was more effective, especially in combination with an oxygen producing (releasing) compound (ORC). Ninty percent of TPH was removed in the presence of ORC in 35 days while 74% in the absence of ORC. This indicated that the indigenous consortial degraders could be immobilized on the active carbon as a biocarrier to manufacture microbial agents and then effectively bioaugmented for remediation of the oil-polluted sediments.

Effect of $H_2O_2$ on Alveolar Epithelial Barrier Properties (폐상피세포 장벽에 대한 $H_2O_2$의 영향)

  • Suh, Duk-Joon;Cho, Se-Heon;Kang, Chang-Woon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.3
    • /
    • pp.236-249
    • /
    • 1993
  • Background: Among the injurious agents to which the lung airspaces are constantly exposed are reactive species of oxygen. It has been widely believed that reactive oxygen species may be implicated in the etiology of lung injuries. In order to elucidated how this oxidant causes lung cell injury, we investigated the effects of exogenous $H_2O_2$ on alveolar epithelial barrier characteristics. Methods: Rat type II alveolar epithelial cells were plated onto tissue culture-treated polycarbonate membrane filters. The resulting confluent monolayers on days 3 and 4 were mounted in a modified Ussing chamber and bathed on both sides with HEPES-buffered Ringer solution. The changes in short-circuit current (Isc) and monolayer resistance (R) in response to the exogenous hydroperoxide were measured. To determine the degree of cellular catalase participation in protection against $H_2O_2$ injury to the barrier, experiments were repeated in the presence of 20 mM aminotriazole (ATAZ, an inhibitor of catalase) in the same bathing fluid as the hydroperoxide. Results: These monolayers have a high transepithelial resistance (>2000 ohm-$cm^2$) and actively transport $Na^+$ from apical fluid. $H_2O_2$(0-100 mM) was then delivered to either apical or basolateral fluid. Resulting indicated that $H_2O_2$ decreased Isc and R gradually in dose-dependent manner. The effective concentration of apical $H_2O_2$ at which Isc (or R) was decreased by 50% at one hour ($ED_{50}$) was about 4 mM. However, basolateral $H_2O_2$ exposure led to $ED_{50}$ for Isc (and R) of about 0.04 mM. Inhibition of cellular catalase yielded $ED_{50}$ for Isc (and R) of about 0.4 mM when $H_2O_2$ was given apically, while $ED_{50}$ for basolateral exposure to $H_2O_2$ did not change in the presence of ATAZ. The rate of $H_2O_2$ consumption in apical and basolateral bathing fluids was the same, while cellualr catalase activity rose gradually with time in culture. Conclusion: Our data suggest that basolateral $H_2O_2$ may affect directly membrane component (e.g., $Na^+,\;K^+$-ATPase) located on the basolateral cell surface. Apical $H_2O_2$, on the other hand, may be largely degraded by catalase as it passes through the cells before reaching these membrane components. We conclude that alveolar epithelial barrier integrity as measured by Isc and R are compromised by $H_2O_2$ being relatively sensitive to basolateral (and insensitive to apical) $H_2O_2$.

  • PDF