• Title/Summary/Keyword: 활동억지시스템

Search Result 7, Processing Time 0.027 seconds

An Experimental Study on the Stabilizing Effect of Piles against Sliding (사면에 설치된 억지말뚝의 활동억지효과에 대한 실험적 연구)

  • Hong Won-Pyo;Song Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.69-80
    • /
    • 2005
  • In order to investigate the stabilizing effect of piles against sliding, a series of model tests were carried out. The model apparatus was designed to perform the model test of slope reinforced by stabilizing piles. The instrumentation system was used to measure the deflection of stabilizing piles during slope failure. The stabilizing effect of the piles in a row with some interval ratio is larger than the isolated pile without interval ratio. Because the prevention force of piles in a row increased due to the soil arching effect between piles during slope failure. Especially, the maximum value of prevention ratio was presented at 0.5 of interval ratio. If the required prevention ratio is 1.1, the interval ratio must be installed from 0.5 to 0.8. Also, the stabilizing effect of piles against sliding is excellent at the interval ratio between 0.5 and 0.8. This value can be proposed as the criterion of the interval ratio between piles against slope failure.

Development of a Computer Program to Analyze Stability of Slopes Reinforced by the Earth Retention System (활동억지시스템으로 보강된 사면의 안정해석 프로그램 개발)

  • Hong Won-Pyo;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.45-58
    • /
    • 2006
  • A new computer program SLOPILE(Ver 3.0) is developed to analyze stability of slopes containing an earth retention system composing of piles, nails and anchors. SLOPILE(Ver 3.0) can calculate the slope stability for both planar failure surfaces in infinite slopes and arc failure surfaces. In order to investigate a design adaptability of SLOPILE(Ver 3.0), analysis results of TALREN and SLOPE/W programs are compared with that of SLOPILE(Ver 3.0). SLOPILE(Ver 3.0) can calculate the slopes reinforced by earth retention system such as piles, nails and anchors. But, TALREN and SLOPE/W can not calculate the slope reinforced by piles. As a analysis result of the example case, SLOPILE(Ver 3.0) is accuracy and suitable program for the stability analysis of slopes reinforced by earth retention system. Therefore, SLOPILE(Ver 3.0) is the most suitable program to analyze the slope reinforced by the earth retention system.

Proposal of a Design Method of slope Reinforced by the Earth Retention System (활동억지시스템으로 보강된 사면의 설계법 제안)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • In this study, the design method of slope reinforced by the earth retention systems were systematically developed, and the flow chart of design procedure fur each system were constructed to design the slope rationally. The proposed design method is composed of 5 steps such as field condition investigation step, slope design step, landslide occurrence prediction step, slope failure scale estimation step and reinforcement countermeasure selection step. The quantitative standard of slope failure scale was established based on the arrangement of various overseas standards which is estimating the slope failure, and the analysis of slope failure scale which is occurred in the country. The slope failure scale is classified into three categories the small scale of slope failure is less than $150m^3$ of slope failure volume, the middle scale of slope failure is from $150m^3$ to $900m^3$ and the large scale of slope failure is more than $900m^3$. The earth retention system could be selected by the proposed slope failure scale based on the slope failure volume. Meanwhile, the design methods of earth retention system such as piles, soil nails and anchors were developed. The optimal countermeasure for slope stability could be proposed using above design methods.

The Behavior of Stabilizing Piles installed in a Large-Scale Cut Slope (대규모 절개사면에 설치된 억지말뚝의 거동)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2009
  • The effect of stabilizing piles on cut slopes is checked and the behavior of slope soil and piles are observed throughout the year by field measurements on the large-scale cut slopes. First of all, the behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil are gradually increased and rapidly decreased at depth of sliding surface. As the result of measuring deformation, the depth of sliding surface below the ground surface can be known. Based on the measuring the depth of the sliding surface, some earth retention system including stabilizing piles were designed and constructed in this slope. To check the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. As the result of instrumentation, the maximum deflection of piles is measured at the pile head. It is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. The deflection of piles is increased during cutting slope in front of piles for the construction of soil nailing. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

A Experimental Study on the Stabilizing Effect of Anchors against Sliding (사면에 설치된 앵커의 활동억지효과에 대한 실험적 연구)

  • Song, Young-Suk;Hong, Won-Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.171-180
    • /
    • 2006
  • To investigate the stabilizing effect of anchors against sliding, a series of the model test was carried out. An apparatus was developed to perform the model test of the slope reinforced by anchors. An instrumentation system has been applied on the anchors to measure the axial force during slope failure. The maximum stabilizing effect is revealed about 0.5% of the area ratio. The initial loss of anchor force is represented about 24% of initial jacking force. This result is equaled to the proposed range(10%~25%) of the field test result(Yun, 1997). The effective jacking force corresponds to 70% of the initial jacking force. Therefore, the initial jacking force should be determined more than 30% of the design jacking force. As the initial jacking force becomes increase, the reinforced slope is transferred to brittle failure behavior due to increasing the density of slope soils.

Assumption of Failure Surface using Borehole Image Processing System in Failed Rock Slope (Borehole Image Processing System에 의한 붕괴사면의 활동면 추정)

  • Yoo Byung-Ok;Chung Hyung-Sik
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.217-239
    • /
    • 1999
  • Investigation methods of cut slope are conducted generally only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitation of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of 4 boleholes and BIPS (Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed highway slope. As the results of BIPS, we could decide potential sliding surface in the slope and conducted to check slope stability. And decided slope stability measures.

  • PDF

An Experimental Study on the Stabilizing Effect of Nails Against Sliding (사면에 설치된 쏘일네일링의 활동억지효과에 대한 실험적 연구)

  • Hong Won-Pyo;Song Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.5-17
    • /
    • 2006
  • In order to investigate the stabilizing effect of nails against sliding, a series of model tests were carried out. The apparatus of model test was designed to perform the model test of soil slope reinforced by nails. The instrumentation system was used to measure the deflection behavior of nails during slope failure. As a result of model tests, the quantity and the occurred position of the maximum bending stress are changed according to the area ratio and the inclination angles of nails. The maximum stabilizing effect against sliding of nails is presented at 0.7$\%$ of the area ratio because the biggest maximum bending stress occurs at this time. But, the stabilizing effect of nails decreases with more than 0.7$\%$ of the area ratio. In the same condition of the area ratio, the stabilizing effect of nails is excellent at -10$^{circ}$ of the inclination angles of nails. The sliding surface can be predicted on the basis of the position of the maximum bending stress in each nails. The shape and depth of sliding surface are changed according to the area ratio and the inclination angles of nails.