• Title/Summary/Keyword: 환경 영향 모니터링

Search Result 937, Processing Time 0.026 seconds

Cohort Observation of Blood Lead Concentration of Storage Battery Workers (축전지공장 근로자들의 혈중 연농도에 대한 코호트 관찰)

  • Kim, Chang-Yoon;Kim, Jung-Man;Han, Gu-Wung;Park, Jung-Han
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.3 s.31
    • /
    • pp.324-337
    • /
    • 1990
  • To assess the effectiveness of the interventions in working environment and personal hygiene for the occupational exposure to the lead, 156 workers (116 exposed subjects and 40 controls) of a newly established battery factory were examined for their blood lead concentration (Pb-B) in every 3 months up to 18 months. Air lead concentration (Pb-A) of the workplaces was also checked for 3 times in 6 months interval from August 1987. Environmental intervention included the local exhaust ventilation and vacuum cleaning of the floor. Intervention of the personal hygiene included the daily change of clothes, compulsory shower after work and hand washing before meal, prohibition of cigarette smoking and food consumption at the work site and wearing mask. Mean Pb-B of the controls was $21.97{\pm}3.36{\mu}g/dl$ at the preemployment examination and slightly increased to $22.75{\pm}3.38{\mu}g/dl$ after 6 months. Mean Pb-B of the workers who were employed before the factory was in operation (Group A) was $20.49{\pm}3.84{\mu}g/dl$ on employment and it was increased to $23.90{\pm}5.30{\mu}g/dl$ after 3 months (p<0.01). Pb-B was increased to $28.84{\pm}5.76{\mu}g/dl$ 6 months after the employment which was 1 month after the initiation of intervention program. It did not increase thereafter and ranged between $26.83{\mu}g/dl\;and\;28.28{\mu}g/dl$ in the subsequent 4 tests. Mean Pb-B of the workers who were employed after the factory had been in operation but before the intervention program was initiated (Group B) was $16.58{\pm}4/53{\mu}g/dl$ before the exposure and it was increased to $28.82{\pm}5.66{\mu}g/dl$(P<0.01) in 3 months later (1 month after the intervention). The values of subsequent 4 tests remained between 26.46 and $28.54{\mu}g/dl$. Mean Pb-B of the workers who were employed after intervention program had been started (Group C) was $19.45{\pm}3.44{\mu}g/dl$ at the preemployment examination and gradually increased to $22.70{\pm}4.55{\mu}g/dl$ after 3 months(P<0.01), $23.68{\pm}4.18{\mu}g/dl$ after 6 months, and $24.42{\pm}3.60{\mu}g/dl$ after 9 months. Work stations were classified into 4 parts according to Pb-A. The Pb-A of part I, the highest areas, were $0.365mg/m^3$, and after the intervention the levels were decreased to $0.216mg/m^3\;and\;0.208mg/m^3$ in follow-up tests. The Pb-A of part II was decreased from $0.232mg/m^3\;to\;0.148mg/m^3,\;and\;0.120mg/m^3$ after the intervention. Pb-A of part III and W was tested only after intervention and the Pb-A of part III were $0.124mg/m^3$ in Jannuary 1988 and $0.081mg/m^3$ in August 1988. The Pb-A of part IV not stationed at one place but moving around, was $0.110mg/m^3$ in August 1988. There was no consistent relationship between Pb-B and Pb-A. Pb-B of the group A and B workers in the part of the highest Pb-A were lower than those of the workers in the parts of lower Pb-A. Pb-B of the workers in the part of the lowest Pb-A incerased more rapidly. Pb-B of group C workers was the highest in part I and the lowest in part IV. These findings suggest that Pb-B is more valid method than Pb-A for monitoring the health of lead workers and intervention in personal hygiene is more effective than environmental intervention.

  • PDF

Water Quality and Ecosystem Health Assessments in Urban Stream Ecosystems (도심하천 생태계에서의 수질 및 생태건강성 평가)

  • Kim, Hyun-Mac;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.311-322
    • /
    • 2008
  • The objectives of the study were to analyze chemical water quality and physical habitat characteristics in the urban streams (Miho and Gap streams) along with evaluations of fish community structures and ecosystem health, throughout fish composition and guild analyses during 2006$\sim$2007. Concentrations of BOD and COD averaged 3.5 and 5.7 mg L$^{-1}$, in the urban streams, while TN and TP averaged 5.1 mg L$^{-1}$ and 274 ${\mu}g$ L$^{-1}$, indicating an eutrophic state. Especially, organic pollution and eutrophication were most intense in the downstream reach of both streams. Total number of fish was 34 species in the both streams, and the most abundant species was Zacco platypus (32$\sim$42% of the total). In both streams, the relative abundance of sensitive species was low (23%) and tolerant and omnivores were high (45%, 52%), indicating an typical tolerance and trophic guilds of urban streams in Korea. According to multi-metric models of Stream Ecosystem Health Assessments (SEHA), model values were 19 and 24 in Miho Stream and Gap Stream, respectively. Habitat analysis showed that QHEI (Qulatitative Habitat Evaluation Index) values were 123 and 135 in the two streams, respectively. The minimum values in the SEHA and QHEI were observed in the both downstreams, and this was mainly attributed to chemical pollutions, as shown in the water quality parameters. The model values of SEHA were strongly correlated with conductivity (r=-0.530, p=0.016), BOD (r=-0.578, p< 0.01), COD (r=-0.603, p< 0.01), and nutrients (TN, TP: r>0.40, p<0.05). This model applied in this study seems to be a useful tool, which could reflect the chemical water quality in the urban streams. Overall, this study suggests that consistent ecological monitoring is required in the urban streams for the conservations along with ecological restorations in the degradated downstrems.

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

A cohort study on blood zinc protoporphyrin concentration of workers in storage battery factory (축전지 공장 근로자들의 혈중 Zinc Protoporphyrin에 대한 코호트 연구)

  • Jeon, Man-Joong;Lee, Joong-Jeong;SaKong, Joon;Kim, Chang-Yoon;Kim, Jung-Man;Chung, Jong-Hak
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.1 s.60
    • /
    • pp.112-126
    • /
    • 1998
  • To investigate the effectiveness of the interventions in working environment and personal hygiene for the occupational exposure to the lead, the blood zinc protoporphyrin (ZPP) concentrations of 131 workers (100 exposed subjects and 31 controls) of a newly established battery factory were analyzed. They were measured in every 3 months up to 18 months. Ai. lead concentration (Pb-A) of the workplaces was also checked for 3 times in 6 months interval from August 1987. Environmental intervention included the local exhaust ventilation and vacuum cleaning of the floor. Intervention of the personal hygiene included the daily change of clothes, compulsory shower after work and hand washing before meal, prohibition of cigarette smoking and food consumption at the work site and wearing mask. Mean blood ZPP concentration of the controls was $16.45{\pm}4.83{\mu}g/d\ell$ at the preemployment examination and slightly increased to $17.77{\pm}5.59{\mu}g/d\ell$ after 6 months. Mean blood ZPP concentration of the exposed subjects who were employed before the factory was in operation (Group A) was $17.36{\pm}5.20{\mu}g/d\ell$ on employment and it was increased to $23.00{\pm}13.06{\mu}g/d\ell$ after 3 months. The blood ZPP concentration was increased to $27.25{\pm}6.40{\mu}g/d\ell$ on 6 months (p<0.01) after the employment which was 1 month after the initiation of intervention program. It did not increase thereafter and ranged between $25.48{\mu}g/d\ell$ and $26.61{\mu}g/d\ell$ in the subsequent 4 results. Mean blood ZPP concentration of the exposed subjects who were employed after the factory had been in operation but before the intervention program was initiated (Group B) was $14.34{\pm}6.10{\mu}g/d\ell$ on employment and it was increased to $28.97{\pm}7.14{\mu}g/d\ell$ (p<0.01) in 3 months later(1 month after the intervention). The values of subsequent 4 tests were maintained between $26.96{\mu}g/d\ell$and $27.96{\mu}g/d\ell$. Mean blood ZPP concentration of the exposed subjects who were employed after intervention program had been started (Group C) was$21.34{\pm}5.25{\mu}g/d\ell$ on employment and it was gradually increased to $23.37{\pm}3.86{\mu}g/d\ell$ (p<0.01) after 3 months, $23.93{\pm}3.64{\mu}g/d\ell$ after 6 months, $25.50{\pm}3.01{\mu}g/d\ell$ after 9 months, and $25.50{\pm}3.10{\mu}g/d\ell$ after 12 months. Workplaces were classified into 4 parts according to Pb-A. The Pb-A of part I, the highest areas, were $0.365mg/m^3$, and after the intervention the levels were decreased to $0.216mg/m^3$ and$0.208mg/m^3$ in follow-up test. The Pb-A of part II which was resulted in lowe. value than part I was decreased from $0.232mg/m^3$ to $0.148mg/m^3$, and $0.120mg/m^3$ after the intervention. The Pb-A of part III was tested after the intervention and resulted in $0.124mg/m^3$ in January 1988 and $0.181mg/m^3$ in August 1988. The Pb-A of part IV was also tested after the intervention and resulted in $0.110mg/m^3$ in August 1988. There was no consistent relationship between Pb-A and blood ZPP concentration. The blood ZPP concentration of the group A and B workers in the part of the highest Pb-A were lower than those of the workers in the parts of lower Pb-A. The blood ZPP concentration of the workers in the part of the lowest Pb-A increased more rapidly. The blood ZPP concentration of the group C workers was the highest in part III. These findings suggest that the intervention in personal hygiene is more effective than environmental intervention, and it should be carried out from the first day of employment and to both the exposed subjects, blue color workers and the controls, white color workers.

  • PDF

Status of Birds in the Nakdong River Estuary Bird Sanctuary before the Four Major Rivers Project (4대강 사업 이전 낙동강 하구 철새 도래지의 주요 조류 현황)

  • Kim, Bum-soo;Yeo, Unsang;Oh, Dongha;Sung, Kijune
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.264-272
    • /
    • 2015
  • Understanding bird status is essential for the systematic and sustainable management of the Nakdong River Estuary, taking into consideration the relationship between ecosystems and the bird species. In this study, bird status in the Nakdong River Estuary Bird Sanctuary prior to the Four Major Rivers Project was analyzed using the bird monitoring data (2003-2011) from surveys conducted by the Busan Development Institute. The high percentage of winter visitors in terms of both species diversity (38.36%) and individual bird numbers (63.14%) suggest that the Nakdong River Estuary is an important wintering site for migratory birds. Cumulative numbers of individual birds were higher in Myungji (208,601), West Nakdong River (202,444), Eulsukdo (153,232), and Baekhap Doyodeung (150,595). The total numbers of migratory species were higher in Eulsukdo (171), Ilungdo (124), Myungji (132), and Samrak (121). Among the 232 species found in the Nakdong River Estuary, Anas platyrhynchos (17.71%) was the most common species, followed by Anas poecilorhyncha (8.85%), Larus crassirostris (6.48%), Anser fabalis (6.09%), Anas penelope (5.16%), and Calidris alpina (4.22%). Most bird taxa, except shelducks, showed annual fluctuations in individual numbers, with increasing frequency during survey periods. Of these, cormorants, swans, and gulls showed higher fluctuations than other taxa. Swans decreased drastically in numbers in 2007-2008 and 2009-2010 compared to previous years. Shore birds, gulls, wagtails, and other forest birds were also less common in 2010-2011. These results suggest that there were some environmental changes that might have affected the birds in the Nakdong River Estuary. Overall, the results suggest that habitat types affect the distribution of dominant species.

Interpretation of Microscale Behaviors and Precision Measurement Monitoring for the Five-story and Seven-story Stone Pagodas from Cheongnyangsaji Temple Site in Gongju, Korea (공주 청량사지 오층석탑 및 칠층석탑의 정밀 계측모니터링과 미세거동 해석)

  • LEE Jeongeun;PARK Seok Tae;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.132-158
    • /
    • 2023
  • The five-story and seven-story stone pagodas at Cheongnyangsaji temple site in Gongju are located under the Sambulbong peak of Gyeryongsan mountain, and are known to have been built of the middle in Goryeo dynasty. As the two pagodas in which two types of Baekje stone pagoda coexist in one era, their historical and academic value are recognized. The seven-story pagoda was overturned by robbery in 1944, and as a result, the five-story pagoda was tilted. Although the two pagodas were restored in 1961, structural instability was continuously raised. In this study, measurement data accumulated from May 2021 to March 2022, and seasonal characteristics were reviewed, and the micro behavior of pagodas were analyzed according to temperature and precipitation during the same period. As a result, the micro thermoelastic behavior was repeated according to the daily temperature change in all sensors, and both the slope and the displacement showed microscale behavior. In the inclinometer, moisture containing the surface and inside of the stones repeated expansion and contraction due to temperature change, showing the micro movements. In particular, the upper part of the five-story pagoda moved up to 3.89° to the northwest, and the seven-story pagoda tilted up to 0.078° to the northeast. The maximum displacements were recorded as 0.127 and 0.149 mm in the five-story and the seven-story pagoda, respectively. These values tended to return to the original position at the end of the measurement, but did not recover completely, indicating a state requiring precise monitoring. The result obtained through the study can be used as basic data for the stable conservation of the two stone pagodas. Based on the behavioral characteristics considering various environmental factors should be analyzed, and the preventive conservation through the maintenance of measurement system built this time should be continued.