• Title/Summary/Keyword: 화학 혼화제

Search Result 68, Processing Time 0.063 seconds

Evaluation of the Exothermic Properties and Reproducibility of Concrete Containing Electro-conductive Materials (전기전도성 재료를 혼입한 콘크리트의 발열특성 및 재현성 평가)

  • Song, Dong-Geun;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.25-34
    • /
    • 2016
  • From 1990's, a study on the development of exothermic concrete, a concrete which electro-conductive material is mixed, has been proceeded. However, due to the difficulty of exothermic reproducibility of concrete specimen, the study has been unable to continuously carried out. Accordingly, this study was focused on developing an exothermic concrete for the purpose of snow-melting material. Cement paste and mortar specimens mixed with graphite, conductive metal powder and chemical admixture were made. The evaluation of exothermic performance and reproducibility was conducted under $-2^{\circ}C$ of low temperature. In addition, micro-chemical analysis was carried out to investigate a cause of exothermic reproducibility. As a test result, the specimen mixed with graphite and superplasticizer with air entrained showed the best exothermic performance and reproducibility. Through micro-chemical analysis, it is judged that polymer or methacrylic acid (MAA), the contents inside the superplasticizer with air entrained, gave exothermic reproducibility by generating the electrochemical reaction with graphite.

Effect of Various Superplasticizers on the Hydration of Cement Paste (시멘트페이스트 수화 반응에 미치는 고유동화제의 영향성에 관한 연구)

  • Shin Jin-Yong;Kim Jae-Young;Hong Ji-Sook;Suh Jeong-Kwon;Lee Young-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1019-1024
    • /
    • 2005
  • To research effects of various chemical superplasticizers(Lignosulfonic acid, Naphthalene sulfonated formaldehyde condensate, melamine sulfonated formaldehyde condensate, and Polycarboxylate) on the hydration of cement, experiments involving XRD, SEM, and DSC have been analysed with cement paste specimens. Regardless of types and dosages of superplasticizers, hydration reaction of specimen applied superplasticizer was delayed to 3 day, but then it showed similarity to plain which don't add superplasticizer. Moreover, the hydrating rate of cement paste was retarded as dosage of superplasticizer was increased. Also, kinetics related with hydrate of cement paste was slow in order of lignosulfonic acid, polycarboxylate, melamine and naphthalene sulfonated formaldehyde condensate. Nevertheless, when all kinds of chemical admixtures were used, morphologies of these hydrates were denser and more uniform than those of plain.

Analysis of concrete characteristic depending on chemical admixtures changing component content ratio (화학혼화제의 성분함유율 변화에 따른 콘크리트의 특성분석)

  • Ryu, Hyun-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • W/C and unit volume, which significantly affect quality of concrete related to strength and durability, are regulated at below $185kg/m^3$ for regular concrete generally used in standard specification for constructions. The aim of this research is to develop chemical admixture and find out its potential use by identifying characteristics of admixtures added to soft concrete and hardening concrete, of which content ratio of component for each type of admixtures is subject to change in accordance with unit volume within KS' allowable range. Sodium gluconate, polyoxyethylene nonylphenyl ether, poly carboxylic copolymer in slump, which is characteristic of soft concrete, are deemed highly sensitive while there is no air entrainment except for $10\sim70%$ in WE, WR component content ratio and NP. In hardening concrete, strength in general showed higher action in compressive strength and tensile strength than in plain strength. Use of proper AE agent and AE water reducing agent at the same time is deemed to be used as chemical admixtures capable of manufacturing high-quality, high-quantity concrete.

Development of Flame Retardant Sheets for Industrial Materials( I ) (친환경 고성능 산업용 난연시트 제조기술의 개발( I ))

  • Hong, Yo-Han;Yu, Hyeon-Jeong;Kim, Hye-In;Park, Su-Min
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.108-110
    • /
    • 2008
  • 본 연구에서는 균일한 난연성능을 지닌 산업용 난연시트 제조 기술 개발을 목적으로, 제조공정 제어와 함께 친환경 난연제를 개발하였다. 기존 난연시트 제조과정에 산발적으로 나타나는 낮은 방염성능이 기모공정에 원인이 있음을 알고 기모촉진제 및 기모에 의한 물리적 화학적 결합력의 변화에 대하여 조사하였다. 그 결과 기모촉진제화 난연제간 혼화성은 문제가 없지만 기모촉진제 처리 후 시료표면의 소수성과 기모에 의한 물리적 구조의 변화가 난연제의 흡착을 방해함을 알 수 있었다. 따라서 기모공정과 난연공정 사이에 수세공정 첨가의 영향, 난연공정 온도변화의 영향, 그리고 염색과 동욕에서 난연제를 처리하는 방법으로 제조공정을 변화하여 균일한 난연성능 구현의 가능성을 조사하였다.

  • PDF

Development of Rural Road Pavement Technology Using Cement Stabilizer (시멘트계 고화재를 활용한 농어촌도로 포장공법 개발)

  • Oh, Young-In;Kong, Gil-Yong;Kim, Seung-Wook
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.171-184
    • /
    • 2007
  • Chemical admixture stabilization has been extensively used in both shallow and deep stabilization in order to improve inherent properties of the soil such as strength and deformation behavior. An increment in strength, a reduction in compressibility, an improvement of the swelling or squeezing characteristics and increasing the durability of soil are the main aims of the admixtures for soil stabilization. Recently, the various advanced cement stabilizer mixing technique was developed. Advanced cement stabilizer mixing technique is environmentally-friendly and has an excellent mixing property and outstanding mixing speed. In this study, to develop the rural road pavement technology using cement stabilizer, compaction and unconfined compression test were performed with various mixing ratio and two types of soil(clay and silty soil). And the freezing/thaw test and bending strength test performed to develop suitable cement stabilizer material for stabilization of rural road. Based on the test results, the liquid types of cement stabilizer material and silty soil mixture are most suitable for rural road construction and although the mixing ratio is low, cement stabilizer mixture is effective for durability of rural road surface layer.

  • PDF

Study on Anti-Washout Properties and Shear-Thickening Behaviors of Surfactant Added Cement Grouts (계면활성제 혼화제를 첨가한 시멘트 그라우트의 수중 불분리 특성 발현과 점도 증가 효과 연구)

  • Jang, In-Kyu;Seo, Seung-Ree;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.480-484
    • /
    • 2012
  • Concrete, the mixture of cement, sand, gravel and water, is a suspension substance extensively used to construct building materials. When a concrete mortar is applied to the underwater construction, the rheology of concrete is of great importance to its flow performance, placement, anti-washout and consolidation. In this research, the anti-washout and rheological properties of concrete have been investigated with concrete admixtures prepared by adding anionic surfactants, cationic surfactants, and polymeric thickeners. The concrete mortar formulated by pseudo-polymeric systems with the electrostatic association of anionic and cationic surfactants, showed high viscosities and suitable anti-washout properties, but poor pumpabilities. The addition of poly methyl vinyl ether to the mixed surfactant system exhibits synergistic effects by improving the concrete mortar properties of the concrete mortar such as fluidity, visco-elastic property, self-leveling, and anti-washout.

Chloride Diffusion Coefficient at Reference Time for High Performance Concrete for Bridge Pylons in Marine Environment (해상교량 주탑용 고성능 콘크리트의 기준재령 염소이온 확산계수)

  • Yoon, Chul-Soo;Kim, Ki-Hyun;Yang, Woo-Yong;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.435-444
    • /
    • 2012
  • High performance concrete mixes are selected and corresponding test specimens are made for the study of chloride diffusion coefficient at reference time. The concrete mixes were same designs as those used in construction of bridges located in a marine environment. Mix design variables included binder type, water-to-binder ratio, mineral admixtures to total binder weight substitution ratio, fine aggregate source, chemical water reducer admixture type for high strength and high flowability, and target slump or slump flow. The test results showed that the diffusion coefficients at reference time varied significantly according to the type of mineral admixtures and their substitution ratios. A model for diffusion coefficient at reference time considering the type of mineral admixture and the substitution ratio was developed. Diffusion coefficients from the developed model were compared with those from literature review, a previous model, and additional test results. All of the comparisons verified that the developed model can reasonably predict diffusion coefficients and the application of the model to the durability design against chloride penetration is appropriate.

Evaluation of Corrosion Resistance using Electro-chemical Methods for the High-Durability Concrete exposed to Marine Condition (해양환경에 노출된 고내구성 콘크리트의 전기화학적기법을 이용한 부식저항성 평가)

  • Yang, Eun-Ik;Kim, Myung-Yu;Lee, Dong-Gun;Han, Sang-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.320-328
    • /
    • 2007
  • The durability of marine concrete structures is severely degraded by corrosion due to seawater attack and diffusion of chloride in concrete. The deduction of durability causes high repair cost for maintenance of marine concrete structure. So, the applicability of high-durable materials is investigated to improve the durability in marine concrete structures. For these, the characteristics of corrosion prevention of marine concrete structures mixed with the mineral admixtures(SF, FA and BFS), the modified steel(stainless and coating steel), and corrosion inhibitors are evaluated using electro-chemical methods. As a results of this study, it is quantified for the effect of promotion of durability by high-durability materials in marine concrete structures.

Characteristics of EVA-Polymer Modified Mortars Recycling Rapid-chilled Steel Slag Fine Aggregate (급냉 제강슬래그를 재활용한 EVA-폴리머 시멘트 모르타르의 특성)

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.652-660
    • /
    • 2008
  • For the recycling of rapid-chilled steel slag, the mechanical strengths and physical properties of EVA-polymer modified mortars with the various replacement ratios of rapid-chilled steel slag were investigated. Twenty five specimens of polymer modified mortars were prepared with the five different amounts of EVA-polymer modifier (0, 5, 10, 15, 20 wt%) and rapid-chilled steel slag (0, 25, 50, 75, 100 wt%). For the investigation of the characteristics of polymer modified mortars, the measurements such as water-cement ratio, unit volume weight, air content for fresh mortar and compressive strength, flexural strength, water absorption, hot water resistance, porosity and SEM investigation for curing specimens were conducted. As a results, with an increase in the replacement ratio of rapid-chilled steel slag, water-cement ratios decreased but unit volume weight increased remarkably. With increasing EVA-polymer modifier and the replacement ratio of rapid-chilled steel slag, percent of water absorption decreased but compressive and flexural strengths increased remarkably. By the hot water resistance test, mechanical strengths decreased but total pore volume and porosity increased remarkably. In the SEM observation, the components of specimen were shown to stick to each other in the form of co-matrix phase before hot water resistance test, but polymer modifier of co-matrix phase was decomposed or deteriorated after hot water resistance test.

Influence of $Na_2SO_4$ on Cement-flyash Paste and the Strength Development of Concrete ($Na_2SO_4$가 시멘트-플라이애쉬 페이스트 및 콘크리트 강도에 미치는 영향)

  • Lee, Chin-Yong;Bae, Sung-Yong;Song, Jong-Taek
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1999
  • It was investigated to evaluate the characteristics of cement-flyash paste which was affected the replacement level, curing method and chemical admixtures. The strength of cement-flyash paste was lower than that of cement paste only and the differences increased with increasing the replacement level. However, in steam curing, the strength of cement-flyash pastes was improved and specially, the early strength was effectively increased. The inclusion of $Na_2SO_4$ increased the early strength of cement-flyash paste. In addition, the strength of concrete including 30% of fly ash and $Na_2SO_4$ has improved and obtained the highest strength compared to other concrete mixes.