• Title/Summary/Keyword: 화재감시

Search Result 179, Processing Time 0.03 seconds

Edge Ontology for Fire Monitoring in Internet of Things (사물인터넷에서 화재 감시를 위한 엣지형 온톨로지)

  • Lim, Hyeryeong;Kim, Yujin;Jung, Inbum
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.343-345
    • /
    • 2020
  • 사물인터넷 시대에 스마트 홈들의 출현으로 엣지 지역에서의 정확한 화재 감지 및 대응 기술에 대한 필요성이 요구되고 있다. 그러나, 화재 감지 동작에서 오작동으로 인한 잘못된 정보를 제공하거나, 감지 기기로부터의 불충분한 정보 제공은 화재 감지/예방을 효과적으로 수행하기 어렵게 한다. 본 논문에서는 사물인터넷 엣지 지역에서 기존의 다양한 센서들을 통해 데이터를 수집하여 온톨로지에서 추론과정을 진행하는 엣지형 온톨로지 시스템을 구현한다. 본 논문에서는 추론된 정보를 바탕으로 사물인터넷 엣지에서 발생되는 화재 사건에 대한 정확한 판단할 수 있게 한다. 제안된 화재 추론 온톨로지를 이용해 기존의 화재감지기가 제공하는 정보 뿐 만 아니라 화재 정보에 대한 확장된 정보를 사용자에게 제공하므로 사용자 유용성을 개선될 수 있음을 보인다.

The Study on the Integrated Emergency Management System using Network GR-type Receiver and Control Desk (네트워크 GR형 수신기와 컨트롤데스크를 이용한 통합방재관리시스템에 대한 연구)

  • Baek, Dong-Hyun;Song, Ho-Bin;Kang, Won-Shun
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.96-101
    • /
    • 2012
  • The buildings of domestic wear the upper floors and an underground in-depth reconciliation tendency to do and the possibility of fire occurrence at the time of formation accident is coming to be high. Therefore will be scattered to various place and is established and prevention of disaster information of the receiver which will integrate there is a necessity which will manage. In this paper away where each receiver is installed in the fire for the remote monitoring and controld able to connect to the Internet and fiber optic cable that can be networked fire receiver and control desk was constructed. Between each device can be used by the fire, and more depending on the status of monitoring and alarm, control and maintenance can be performed to develop an integrated management system. The system is evaluated by the criteria of the KFI, and for each segment of the signal propagation time to perform experiments confirmed the reliability of the performance.

Deep Learning Based CCTV Fire Detection System (딥러닝 기반 CCTV 화재 감지 시스템)

  • Yim, Jihyeon;Park, Hyunho;Lee, Wonjae;Kim, Seonghyun;Lee, Yong-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.139-141
    • /
    • 2017
  • 화재는 다른 재난보다 확산 속도가 빠르기 때문에 신속하고 정확한 감지와 지속적인 감시가 요구된다. 최근, 신속하고 정확한 화재 감지를 위해, CCTV(Closed-Circuit TeleVision)으로 획득한 이미지를 기계학습(Machine Learning)을 이용해 화재 발생 여부를 감지하는 화재 감지 시스템이 주목받고 있다. 본 논문에서는 기계학습의 기술 중 정확도가 가장 높은 딥러닝(Deep Learning)기반의 CCTV 화재 감지 시스템을 제안한다. 본 논문의 시스템은 딥러닝 기술 적용뿐만이 아니라, CCTV 이미지 전처리 과정을 보완함으로써 딥러닝에서의 미지 데이터(unseen data)의 낮은 분류 정확도 문제인 과적합(overfitting)문제를 해결하였다. 본 논문의 시스템은 약 80,000 개의 CCTV 이미지 데이터를 학습하여, 90% 이상의 화재 이미지 분류 정확도의 성능을 보여주었다.

  • PDF

Design and Implementation of U-city Infrared Image Surveillance System (U-city 적외선 영상 감시 시스템의 설계 및 구현)

  • Kim, Won-Ho;Jang, Bok-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.561-564
    • /
    • 2009
  • This paper present design and implementation of U-city infrared image surveillance system based on the digital media processor. The hardware is designed and implemented by using commercial chips such as DM642 processor and video encoder, video decoder and the functions of software are to analyze temperature distribution of a monitoring image and to monitor disaster situation such as fire. The required functions and performances are confirmed by testing of the prototype and we verified practicality of the system.

  • PDF

Color and Motion-based Fire Detection in Video Sequences (비디오 영상에서 컬러와 움직임 기반의 화재 검출)

  • Kim, Alla;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.471-477
    • /
    • 2011
  • A wide distribution of CCTV cameras in many public areas can be used not only for video surveillance systems but also for preserving fire occurrence. A proposed approach is based on visual information through a static camera. Video sequences are analyzed to find fire candidates and then spatial analyses procedure for detected fire-like color foreground is carried out. If spatial and temporal variances changes rapidly and close to fire motion, fire candidate is considered as fire.

Fire Detection Algorithm based on Color and Motion Information (색상과 움직임 정보 기반의 화재 감지 알고리즘)

  • Kim, Alla;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.1011-1016
    • /
    • 2009
  • In this paper, we propose the method of fire detection. A wide distribution of CCTV cameras (Closed Circuit Television) in many public areas can be used not only for video surveillance systems but also for detecting fire occurrence. A proposed approach is based on visual information through a static camera. Video sequences are analyzed to find fire candidates and then spatial analyses procedure for detected fire-like color foreground is carried out. From the simulation results, our method showed the best performance when spatial and temporal fire candidates changes rapidly and close to fire motion.

  • PDF

Development of Early Tunnel Fire Detection algorithm Using the Image Processing (영상 처리 기법을 이용한 터널 내 화재의 조기 탐지 기법의 개발)

  • Lee, Byoung-Moo;Han, Don-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.499-504
    • /
    • 2006
  • 터널 내 화재 발생 시 대규모의 인명, 재산 피해가 발생하는데 이러한 상황을 조기에 탐지함으로써 피해를 최소화하기 위한 시스템이 필요하다. 또한 터널 내 설치된 CCTV를 사람이 24시간 감시하기에는 너무 어려운 점이 많다. 이에 따라 적절한 영상 처리를 통한 화염 및 연기 검출 시스템을 통해 경보를 알려줄 경우, 보다 편리하고 사람이 모니터 앞에 없을 때 화재 발생 시 화재를 검출할 수 있어 피해를 최소화 할 수 있다. 본 논문에서는 영상처리 기법을 이용하여 터널 안에서 발생한 화재 및 연기를 고속으로 탐지하기 위한 알고리즘을 제안하였다. 터널 안에서의 화재 탐지는 차량 조명 및 터널내의 조명등과 같은 여러 가지 상황에 의해 산불 탐지 알고리즘과 다른 독자적인 알고리즘의 개발이 요구된다. 본 논문에서 제시한 두 가지 알고리즘은 기존 알고리즘보다 정확한 위치 탐지와 초기 단계에서의 탐지가 가능하도록 되었다. 또한 우리는 실험 결과를 통해 각각의 성능을 비교함으로써 제시한 알고리즘의 타당성을 보여주었다.

  • PDF

IF2bNet: An Optimized Deep Learning Architecture for Fire Detection Based on Explainable AI (IF2bNet: 화재 감지를 위한 설명 가능 AI 기반 최적화된 딥러닝 아키텍처)

  • Won Jin;Mi-Hwa Song
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.719-720
    • /
    • 2024
  • 센서 기반의 자동화재탐지설비의 역할을 지원할 목적으로, 합성곱 신경망 기반의 AI 화재 감시장비등이 연구되어왔다. ai 기반 화재 감지에 사용되는 알고리즘은 전이학습을 주로 이용하고 있고, 이는 화재 감지에 기여도가 낮은 프로세스가 내장되어 있을 가능성이 존재하여, 딥러닝 모델의 복잡성을 가중시키는 원인이 될 수 있다. 본 연구에서는 이러한 모델의 복잡성을 개선하고자 다양한 딥러닝 및 해석 기술들을 분석하였고, 분석 결과를 토대로 화재 감지에 최적화된 아키텍처인 "IF2bNet" 을 제안한다. 구현한 아키텍처의 성능을 비교한 결과 동일한 성능을 내면서, 파라미터를 약 0.1 배로 경량화 하여, 복잡성을 완화하였다.

The Study of Air Sampling Smoke Detector (공기흡입형 연기감지장치에 관한 연구)

  • 이복영;이병곤
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.86-91
    • /
    • 2003
  • Since the air stream in the room controlled by HVAC system affects on he expected response of conventional detectors which are designed in accordance with normal characteristics of air stream in the fire incident, unexpected operation time delay may occur in fire. In order to solve this problem and to improve sensitivity so that to initiate fire in its early stages for minimizing damage and protecting people, we studied and developed Air Sampling Smoke Detector. The Air Sampling Smoke Detector is a kind of active-type fire detection system. it draws air continuously from the protected area through an air sampling pipe network to the smoke density analyzer. This study presents smoke density analysing technique and air intake balancing technique through an air sampling pipe network. As a result of evaluating, Air Sampling Smoke Detector was much more sensitive than conventional smoke detectors that passively wait for smoke to reach them and was not affected by ambient airflow in the room by means of balanced air intake through the sampling holes.

A Study of Smart Robot Architecture and Movement for Observation of Dangerous Region (위험지역 감시스마트로봇의 설계와 동작에 관한 연구)

  • Koo, Kyung-Wan;Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.83-88
    • /
    • 2013
  • Catastrophic disasters are sprouting out recently, i.e., the radiation leaks and the hydrofluoric acid gas leaks, etc. The restoration work for these kinds of disasters is very harmful and dangerous for human beings to handle themselves, thus allowing manless robots to fly the reconnaissance planes over to the disaster stricken areas and do the necessary work instead. For this endeavor and purpose, we created and tested an intelligent robot that can inspect those areas, using Mbed (ARM processor) technology temperature sensors and gas sensors aided by CAM (Computer-Aided Manufacturing) cameras. Also, HTTP Server, PC, androids and their combined efforts allow their remote controlled operation from far away with timing control. These intelligent robots can be on duty for 24 hours, minimizing the accidents and crimes and what not, and can respond more quickly when these misfortunes actually happen. We can anticipate the economic effects as well, derived from the reduced needs for hiring human resources.