The goal of our research is to build a text-independent speaker identification system that can be used in any condition without any additional adaptation process. The performance of speaker recognition systems can be severely degraded in some unknown mismatched microphone and noise conditions. In this paper, we show that PCA(principal component analysis) can improve the performance in the situation. We also propose an augmented PCA process, which augments class discriminative information to the original feature vectors before PCA transformation and selects the best direction for each pair of highly confusable speakers. The proposed method reduced the relative recognition error by 21%.
In this paper, a contort- and speaker-dependent cepstrum extraction method and a channel normalization method for minimizing the loss of speaker characteristics in the cepstrum were proposed for a robust speaker recognition system over the channel. The proposed extraction method creates a cepstrum based on the pitch synchronous analysis using the inherent pitch of the speaker. Therefore, the cepstrum called the 〃pitch synchronous cepstrum〃 (PSC) represents the impulse response of the vocal tract more accurately in voiced speech. And the PSC can compensate for channel distortion because the pitch is more robust in a channel environment than the spectrum of speech. And the proposed channel normalization method, the 〃formant-broadened pitch synchronous CMS〃 (FBPSCMS), applies the Formant-Broadened CMS to the PSC and improves the accuracy of the intraframe processing. We compared the text-independent closed-set speaker identification on 56 females and 112 males using TIMIT and NTIMIT database, respectively. The results show that pitch synchronous km improves the error reduction rate by up to 7.7% in comparison with conventional short-time cepstrum and the error rates of the FBPSCMS are more stable and lower than those of pole-filtered CMS.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.661-664
/
2022
양돈을 관리하는 데에 있어 비정상 개체를 식별하고 사전에 추적하거나 격리할 수 있는 양돈업 시스템을 구축하는 것은 효율적인 돈사관리를 위한 필수 요소이다. 그러나 돈사내의 이상 상황을 탐지하는 연구는 보고되었지만, 이상 상황이 발생한 돼지를 특정하여 식별하는 연구는 찾아보기 힘들다. 따라서, 본 연구에서는 소리를 활용하여 이상 상황이 발생함을 탐지한 후 영상을 활용하여 소리를 낸 특정 돼지를 식별할 수 있는 시스템을 제안한다. 해당 시스템의 주요 알고리즘은 활성 화자 탐지 문제에서 착안하여 이를 돈사에 맞게 적용하여, 비정상 소리를 내는 활성 돼지를 식별 가능하도록 구현하였다. 제안한 방법론은 모의 실험을 통해 돈사 내의 이상 상황이 발생한 돼지를 식별할 수 있음을 확인하였다.
One key factor that hinders the widespread deployment of speaker identification technologies is the requirement of long enrollment utterances to guarantee low error rate during identification. To gain user acceptance of speaker identification technologies, adaptation algorithms that can enroll speakers with short utterances are highly essential. To this end, this paper applies MLLR speaker adaptation for speaker enrollment and compares its performance against other speaker modeling techniques: GMMs and HMM. Also, to speed up the computational procedure of identification, we apply speaker clustering method which uses principal component analysis (PCA) and weighted Euclidean distance as distance measurement. Experimental results show that MLLR adapted modeling method is most effective for short enrollment utterances and that the GMMs performs better when long utterances are available.
Identification is the process automatically identify who is speaking on the basis of information obtained from speech waves. In training phase, each speaker models are trained using each speaker's speech data. GMMs (Gaussian Mixture Models), which have been successfully applied to speaker modeling in text-independent speaker identification, are not efficient in insufficient training data environment. This paper proposes speaker modeling method using MLLR (Maximum Likelihood Linear Regression) method which is used for speaker adaptation in speech recognition. We make SD-like model using MLLR adaptation method instead of speaker dependent model (SD). Proposed system outperforms the GMMs in small training data environment.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.259-262
/
2022
정보화 시대 스마트폰이 대중화되고 실시간 인터넷 사용이 가능해짐에 따라, 본인을 식별하기 위한 사용자 인증이 필수적으로 요구된다. 대표적인 사용자 인증 기술로는 아이디와 비밀번호를 이용한 비밀번호 인증이 있지만, 키보드로부터 입력받는 이러한 인증 정보는 시각 장애인이나 손 사용이 불편한 사람, 고령층과 같은 사람들이 많은 서비스로부터 요구되는 아이디와 비밀번호를 기억하고 입력하기에는 불편함이 따를 뿐만 아니라, 키로거와 같은 공격에 노출되는 문제점이 존재한다. 이러한 문제점을 해결하기 위하여, 자신의 신체의 특징을 활용하는 생체 인증이 대두되고 있으며, 그중 목소리로 사용자를 인증한다면, 효과적으로 비밀번호 인증의 한계점을 극복할 수 있다. 이러한 화자 인식 기술은 KT의 기가 지니와 같은 음성 인식 기술에서 활용되고 있지만, 목소리는 위조 및 변조가 비교적 쉽기에 지문이나 홍채 등을 활용하는 인증 방식보다 정확도가 낮고 음성 인식 오류 또한 높다는 한계점이 존재한다. 상기 목소리를 활용한 사용자 인증 기술인 화자 인식 기술을 활용하기 위하여, 사용자 목소리를 학습시켰으며, 목소리의 주파수를 추출하는 MFCC 알고리즘을 이용해 테스트 목소리와 정확도를 측정하였다. 그리고 악의적인 공격자가 사용자 목소리를 흉내 내는 경우나 사용자 목소리를 마이크로 녹음하는 등의 방법으로 획득하였을 경우에는 높은 확률로 인증의 우회가 가능한 것을 검증하였다. 이에 따라, 더욱 효과적으로 화자 인식의 정확도를 향상시키기 위하여, 본 논문에서는 목소리에 잡음을 섞는 방법으로 화자를 인식하는 방안을 제안한다. 제안하는 방안은 잡음이 정확도에 매우 민감하게 반영되기 때문에, 기존의 인증 우회 방법을 무력화하고, 더욱 효과적으로 목소리를 활용한 화자 인식 기술을 제공할 것으로 사료된다.
Proceedings of the Acoustical Society of Korea Conference
/
1987.11a
/
pp.82-85
/
1987
Preliminary results of using the LPC parameter for text-independent speaker identification problem are presented. The idetification process includes log likelihood ratio for distance measure and dynamic programming for time normalization. To generate the data base for experiments, ten times. Experimental results show 99.4% of identification accuracy, incorrect identification were made when the speaker uses a dialect.
In, Joon-Hawn;Yoo, Byong-Wook;Ryu, Seok-Han;Jung, Myong-Jin;Kim, Chang-Seok
Journal of the Korean Institute of Telematics and Electronics T
/
v.36T
no.4
/
pp.30-37
/
1999
This study suggested the Fuzzy Lyapunov dimension. The Fuzzy Lyapunov dimension is to evaluate the quantitative variation of the attractor. In this paper the speaker recognition is evaluated by the Fuzzy Lyapunov dimension. It has been proved that the suggested Fuzzy Lyapunov dimension is superior in the discrimination characteristics between standard reference pattern attractors, and in reference to the test pattern attractor, it has been verified that it is the speaker recognition parameter which absorbs the pattern variation. In order to evaluate the Fuzzy Lyapunov dimension as speaker recognition parameter, the mistaken recognition according to discrimination error in each of speaker and standard reference pattern was estimated, and the validity of the speaker recognition parameter was experimental. As the result of the speaker recognition experiment, 97.0[%] of recognition ratio was obtained, and it was confirmed that the Fuzzy Lyapunov dimension was fit for the speaker recognition parameter.
Kim, Ju-ho;Heo, Hee-Soo;Jung, Jee-weon;Shim, Hye-jin;Kim, Seung-Bin;Yu, Ha-Jin
The Journal of the Acoustical Society of Korea
/
v.38
no.5
/
pp.593-600
/
2019
The similarity in tones between speakers can lower the performance of speaker verification. To improve the performance of speaker verification systems, we propose a multi-task learning technique using deep neural network to learn speaker information and age information. Multi-task learning can improve generalization performances, because it helps deep neural networks to prevent hidden layers from overfitting into one task. However, we found in experiments that learning of age information does not work well in the process of learning the deep neural network. In order to improve the learning, we propose a method to dynamically change the objective function weights of speaker identification and age estimation in the learning process. Results show the equal error rate based on RSR2015 evaluation data set, 6.91 % for the speaker verification system without using age information, 6.77 % using age information only, and 4.73 % using age information when weight change technique was applied.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.374-378
/
2022
대화형 관계 추출의 목표는 주어진 대화에서 두 개체 간의 관계를 식별하는 것이다. 대화 중에 화자는 개체 및 관계와 관련이 있는 단서인 트리거를 통해 특정 개체 간 관계를 식별하는 것에 힌트를 얻을 수 있다. 그러나 데이터에 대해 항상 트리거 정보가 존재하는 것이 아니므로 트리거를 활용해 성능을 향상시키는 것은 어렵다. 본 논문은 이 문제점을 해소하기 위해 대화, 개체, 관계 중심으로 트리거 생성 모델을 학습하고, 이를 통해 생성된 트리거를 대화형 관계 추출에 학습하여 관계 식별에 효과적인 성능 향상을 보이는 접근법을 제안한다. 제안하는 접근법은 대화형 관계 추출 태스크에서 기존 성능과 비교한 결과 Dev, Test에서 각각 F1 19.74%p, F1 15.53%p 의 성능 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.