• Title/Summary/Keyword: 화염법

Search Result 228, Processing Time 0.027 seconds

Effect of the Flow Rate of Flame Gases on the Crystal Structure of TiO2 Nanopowder Synthesized by Flame Method (화염법으로 제조된 TiO2 나노분말의 결정구조에 미치는 화염가스 유량의 영향)

  • 지현석;안재평;허무영;박종구
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.448-455
    • /
    • 2003
  • $TiO_2$ nanopowder has been synthesized by means of the flame method using a precursor of titanium tetraisopropoxide (TTIP, Ti$(OC_3H_7)_4)$. In order to clarify the effect of cooling rate of hot flame on the formation of $TiO_2$ crystalline phases, the flame was controlled by varying the mixing ratio and the flow rate of gases. Anatase phase was predominantly synthesized under the condition having the steep cooling gradient in flame, while a slow cooling gradient enabled to form almost rutile $TiO_2$ nanopowder of above 95%.

Lifted Flames in Laminar Coflow Jets of Propane (층류 동축류 제트에서의 프로판 부상 화염에 관한 실험적 연구)

  • Lee, J.;Won, S.H.;Jin, S.H.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.61-67
    • /
    • 2002
  • Characteristics of lifted flames in axisymmetric laminar coflow jets have been investigated experimentally. Approximate equations for velocity and concentration with virtual origins have been proposed to analyze the behavior of flames in coflow jets. Measuring Rayleigh intensity to investigate the concentration field. proposed approximate equations were confirmed. By using the results of OH PLIF, direct photography and Rayleigh scattering measurement, it is shown that the locations of maximum intensity in direct photography coincide with the tribrachial points in axisymmetric jets and the tribrachial points travel on the stoichiometric contour. For coflow jets, the experimental results of liftoff height have been successfully correlated with nozzle exit velocity using predicted behavior from proposed approximated equations. These results substantiate the stabilization mechanism in coflow jet is based on the balance between flame propagation speed and axial flow velocity, same as for the free jets.

  • PDF

Measurement of Temperature in Double-concentric Diffusion Flames by Rapid Insertion Technique (급속 삽입범에 의한 동축 이중 확산화염 내부 온도 분포의 측정)

  • Chung, J.R.;Nam, P.W.;Lee, G.W.;Jurng, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.231-240
    • /
    • 1999
  • The temperature distribution in double-concentric diffusion flames have been investigated experimentally by rapid insertion technique. Using a fine thermocouple and rapid insertion mechanism, the temperature has been measured before soot particles attach the thermocouple junction which can affect the temperature signal by changing the radiation heat loss. For double-concentric diffusion flames, the temperature at the axis is higher than that of normal coflow diffusion flames because of the inverse diffusion flame at the center of the flame. However, it is almost same at the periphery on which the inverse flame does not have an effect.

  • PDF

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

중유화력발전소에서 NOx 저감 연소기술의 적용 사례 연구

  • 허철구;이기호;문성홍
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.38-40
    • /
    • 2003
  • 본 연구에서 적용한 저 NOx 연소법의 NOx 저감 효과를 비교해 보면 다단 연소법이 지연연소 효과와 국부적인 최고 화염온도 감소, 고온부에서의 산소농도 감소효과 등이 동시에 나타나 저 과잉공기 연소법, 배기가스 재순환법, 이단 연소법 보다 더 큰 NOx 저감효과를 얻을 수 있음을 알 수 있었다. 다만, 총 공급공기 량에 대한 분할 공급공기량의 비가 일정수준 이상으로 커지면 CO 발생량 증가로 효율저하 등의 문제점이 우려되므로 연소상태를 저하시키지 않는 공급비를 산정하는 것이 중요할 것으로 생각된다.

  • PDF

Axisymmetric Simulation of Nonpremixed Counterflow Flames - Effects of Fuel Concentration on Flame Structure - (비예혼합 대향류 화염의 축대칭 모사 - 연료농도가 화염구조에 미치는 영향 -)

  • Park Woe-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.44-50
    • /
    • 2003
  • The axisymmetric methane-air counterflow flame was simulated to investigate changes in the flame structure due to the fuel concentration and to evaluate the numerical method. The global strain rates $a_g=20,\;60,\;90\;s^{-1}$ and the mole fractions of methane $x_m=20,\;50,\;80\%$ in the fuel stream were taken to be numerical parameters. The axisymmetric simulation was conducted by using the Fire Dynamics Simulator (FDS) which employed a mixture fraction combustion model, and the results were compared with those of OPPDIF, which is an one-dimensional flamelet code and includes detail chemical reactions. In all the cases tested, there was good agreement in the temperature and axial velocity profiles between the axisymmetric and one-dimensional simulations. It was shown that the flame thickness and peak flame temperature increase and the flame radius decreases as the fuel concentration increases.

  • PDF

Combustion Characteristics of Orifice Size of Torch in a CVCC (토치 점화 장치의 오리피스 직경에 따른 연소특성 파악)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Choi, Chang-Hyeon;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.59-63
    • /
    • 2010
  • Seven different size of orifice were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The initial flame development and flame propagation were analyzed by the mass fraction burn and combustion enhancement rate. The combustion pressures were measured to calculate the mass fraction burn and the combustion enhancement rates. In addition, the flame propagations were visualized by the shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burned fraction were increased when using the torch-ignition device. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage.

  • PDF

Heat Loss to Combustion Chamber Wall During Laminar Flame Propagation (층류화염전파중의 연소실 벽면으로의 열손실)

  • 이상준;한동호;김문헌;이종태;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1398-1407
    • /
    • 1992
  • The prediction of heat loss during laminar flame propagation was carried out by measurement of gas pressure and visualization of flame propagation in the constant volume combustion chamber. And to validate the prediction, the instantaneous temperature at wall of combustion chamber was also measured. Consequently, it was found that heat loss was increased according to increasing of maximum flame travel distance, but rate of heat loss for heat release during laminar flame propagation was nearly constant. And heat loss depends on heat transfer area which was contacted the wall by burned gas regardless to spark plug location.

Dynamic Oxidation Behaviors of Aluminide Coated Titanium Alloys (알루미나이드 코팅된 티타늄 합금의 동적산화거동)

  • Son, Youngil;Park, Jinsoo;Park, Joonsik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.84-90
    • /
    • 2015
  • Titanium alloys has been received an attention due to their excellent specific strength and many other superior properties in the application of components of flying subjects. In this study, Ti-6Al-4V (Ti64 alloy) has been selected in order to evaluate oxidation and degradation behaviors under the exposure of high temperature flame. The alloy has been coated with Al diffusion coating routes. The coated alloys showed an improved oxidation and degradation behaviors. The oxidation and degradation mechanism for the coated and uncoated alloys has been discussed in terms of microstructural observations.

Analysis of the Contents in Stabilized Chlorine Dioxide (안정화 이산화염소의 성분분석)

  • Shin, Ho-Sang;Oh-Shin, Yun-Suk
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.403-407
    • /
    • 1999
  • A method for detecting chlorine dioxide in drinking water was developed by the modified iodometric titration. This method requires prior removal of interfering chemicals such as chlorine and/or other oxidants: the interferents are removed by $N_2$ purging. Chlorite and chlorate were successfully quantified by the ion chromatography-conductivity detection. Stabilized chlorine dioxide that is commercially available contained only traces of chlorine dioxide (0.01-0.09%). In reality, its main component is chlorite.

  • PDF