• Title/Summary/Keyword: 화약

Search Result 1,123, Processing Time 0.026 seconds

Influence of Design Parameters on the Behavior of Pyrotechnic Separation Nut (파이로테크닉 분리 너트 거동에 대한 설계 인자의 영향 분석)

  • Woo, Jeongmin;Kim, Jeong Ho;Cho, Jin Yeon;Jang, Seung-Gyo;Lee, Hyo-Nam;Yang, Hee Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.617-628
    • /
    • 2019
  • The currently considered pyrotechnic separation nut is separated through the complicated process, because it has many internal moving parts and two variable-volume chambers connected by the vent hole. Therefore, it has many design parameters. Some of these are the contact angles between internal moving parts, the masses of the internal moving parts, the inner diameter of the push rod protrusion, the initial volumes of the chambers, the mass of the explosive charge, and the diameter of the vent hole. To improve the pyrotechnic separation nut, it is necessary to understand how the behavior of the separation nut is changed according to design parameters. In this point of view, parametric studies are carried out using the previously proposed prediction model for pyrotechnic separation nut behaviors. In each case, the parameter of the interest is changed while the others are kept unchanged. From the results, it is investigated how each design parameter influences the separation behavior.

Establishment of Hygrothermal Aging Mechanism via Thermal Analysis and Extraction of Reaction Kinetics of Ti Metal-based Pyrotechnic Materials (티타늄 금속 기반의 파이로테크닉 물질에 대한 열분석 및 반응특성 추출을 통한 열·수분 노화 메커니즘 구축)

  • Oh, Juyoung;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.759-769
    • /
    • 2021
  • For aerospace propulsion systems, Titanium Hydride Potassium Perchlorate (THPP) is a material commonly used as a pyrotechnic initiator that generates gas when energy is supplied or as a supplement charge for NASA standard initiator (NSI). However, when the energetic materials are stored for a long time, it faces the problem of 'aging'. In this study, changes in thermodynamic properties of THPP aged under various humidity environments were identified through thermal analysis and surface analysis. First, a considerable amount of cracks on the surface of the oxidant was found in the aged THPPs. Particularly, when the humidity level increased, the number and length of the cracks rapidly increased. Also, the deterioration of Viton was found only in the thermally aged sample whereas the oxidation of the fuel was more pronounced in the hygrothermally aged samples. The extracted kinetic parameters of THPP on the reaction progress vary greatly by the humidity level, indicating that moisture significantly changes the performance and combustion reaction of THPP, which may eventually result in a reduced lifespan.

Study of Aging and Performance About Separation Devices Has Been Stored (장기 보관된 분리장치의 성능 및 노화에 관한 연구)

  • Kim, Dong-seong;Jin, Hong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.565-572
    • /
    • 2021
  • In this study, a study on the performance and aging of explosive bolts stored for a long time among pyrotechnic mechanical devices(PMD) used as separation devices in the defense field is conducted. For this, explosive bolts that had been installed in the weapon system for about 10 years are secured. Performance and life extension test procedures are established based on the AIAA Standard and MIL-STD. Before performance evaluation, non-functional tests are performed to check whether external changes or failures occurred. Next, circuit inspection and X-ray tests are conducted to check the failure in internal circuits and structures. After that, performance test is carried out to confirm the operation of the samples that passed the non-functional test. Through this test, separation of bolt and separation time are measured, and some samples are tested after a high temperature storage test to confirm the remaining life and the possibility of extension. Finally, the remaining life and reliability are predicted based on the results of the test and the Arrhenius model to identify remaining shelf life and reliability depend on time.

Design of Seat Belt Pretensioner driven by Elastic Force (탄성력 기반 안전벨트 프리텐셔너 설계)

  • Yongsu Lee;Seyun Park;Hyuneun Lee;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.545-550
    • /
    • 2023
  • A pretensioner is a safety device that protects occupants by pulling the seat belt in the event of a vehicle collision. However, since the pretensioner is driven by a explosive method, it is necessary to replace not only the gas generator but also all connecting parts including the manifold after an accident. Therefore, in this paper, we propose an elastic force-based pretensioner that can be used safely and semi-permanently. After analyzing the operating mechanism of the existing pretensioner from a thermodynamic/dynamic point of view, the spring stiffness that can be deployed within an appropriate operating time was determined by converting the gas explosion energy into elastic energy. In addition, the coil spring shape that satisfies the elastic stiffness was designed in consideration of the vehicle interior installation standard. Finally, the operating performance of the pretensioner driven by elastic force was verified through fabrication.

Development of Laminated Blade Based Shock Absorber Using Viscoelastic Adhesive Tape (점탄성 테이프를 적용한 적층형 블레이드 기반 충격저감장치)

  • Jae-Seop Choi;Yeon-Hyeok Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.86-93
    • /
    • 2023
  • Pyrotechnic separation devices have been widely used as holding and release mechanism for deployable appendage. However, pyro-shock can cause temporal or permanent damage on shock sensitive components such as electronics, mechanism, and brittle components. This study proposed a low-stiffness blade based passive shock absorber using a multi-layered stiffener laminated with viscoelastic acrylic tapes for reducing transmitted pyro-shock upon explosion of pyrotechnic separation devices. The multi-layered structure with viscoelastic tape has high-damping characteristics to effectively secure structural integrity of low-stiffness blades under the launch environment. The design effectiveness was verified through a shock test by dropping a pendulum. The structural integrity of the shock absorber under a launch environment was evaluated through structural analysis under load conditions with a deployable payload.

A Study on Movement of the Free Face During Bench Blasting (전방 자유면의 암반 이동에 관한 연구)

  • Lee, Ki-Keun;Kim, Gab-Soo;Yang, Kuk-Jung;Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.

Uptake and Transformation of RDX by Perennial Plants in Poaceae Family (Amur Silver Grass and Reed Canary Grass) under Hydroponic Culture Conditions (수경재배조건에서 다년생 벼과식물(물억새 및 갈풀)에 의한 RDX 흡수 및 분해)

  • Park, Jieun;Bae, Bumhan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.237-245
    • /
    • 2014
  • Amur silver grass (Miscanthus sacchariflorus) and reed canary grass (Phalaris arundinacea) were selected for RDX removal experiments in hydroponic culture conditions based on vegetation survey at three shooting ranges in northern Kyunggi province. Seedling of two plants were grown in 1/4 strength Hoagland solution in quadruplicates containing 10, 20, 30, 40 mg/L RDX for 15 days along with control and blank treatments. During the 15 days of incubation, pH and RDX concentration in medium were routinely analyzed and RDX contents in the shoot and the root were determined after solvent extraction at the end of the experiments. Both plant species showed no symptoms of RDX phyto-toxicity. The pseudo first order RDX-removal constants for amur silver grass and reed canary grass were in the range of $0.0143{\sim}0.0484day^{-1}$ and $0.0971{\sim}0.1853^{-1}$, respectively. Plant biomass normalized RDX removal rates, which decreased with the increase of initial RDX concentration, were in the range of $0.27{\sim}1.01mL{\cdot}g^{-1}day^{-1}$ and $0.87{\sim}1.66mL{\cdot}g^{-1}day^{-1}$ for amur silver grass and reed canary grass, respectively. After 15 days of treatment, RDX removal from the medium decreased from 49.0% to 23.7% with increase in the initial RDX concentration in amur silver grass and 7.3% of the initial RDX remained in the plant. In reed canary grass planted medium, less than 16.8% and 5% of the initial RDX remained in the medium and in the plant, respectively. Large quantities of unidentified polar compound, which was not detected in amur silver grass, accumulated in the root and shoot of reed silver grass.

Prediction of Potential Risk Posed by a Military Gunnery Range after Flood Control Reservoir Construction (홍수조절지 건설 후 사격장 주변지역의 위해성예측 사례연구)

  • Ryu, Hye-Rim;Han, Joon-Kyoung;Nam, Kyoung-Phile;Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.87-96
    • /
    • 2007
  • Risk assessment was carried out in order to improve the remediation and management strategy on a contaminated gunnery site, where a flood control reservoir is under construction nearby. Six chemicals, including explosive chemicals and heavy metals, which were suspected to possess risk to humans by leaching events from the site were the target pollutants for the assessment. A site-specific conceptual site model was constructed based on effective, reasonable exposure pathways to avoid any overestimation of the risk. Also, conservative default values were adapted to prevent underestimation of the risk when site-specific values were not available. The risks of the six contaminants were calculated by API's Decision Support System for Exposure and Risk Assessment with several assumptions. In the crater-formed-area(Ac), the non-carcinogenic risks(i.e., HI values) of TNT(Tri-Nitro-Toluene) and Cd were slightly larger than 1, and for RDX(Royal Demolition Explosives), over 50. The total non-carcinogenic risk of the whole gunnery range calculated to a significantly high value of 62.5. Carcinogenicity of Cd was estimated to be about $10^{-3}$, while that of Pb was about $5\;{\times}\;10^{-4}$, which greatly exceeded the generally acceptable carcinogenic risk level of $10^{-4}{\sim}10^{-6}$. The risk assessment results suggest that an immediate remediation practice for both carcinogens and non-carcinogens are required before the reservoir construction. However, for more accurate risk assessment, more specific estimations on condition shifts due to the construction of the reservoir are required, and more over, the effects of the pollutants to the ecosystem is also necessary to be evaluated.

Feasibility Study for the Cleaning of Well Screens using High-voltage Pulsed Discharge (고전압 펄스 방전을 이용한 지하수 관정 스크린 공막힘 재생법 연구)

  • Chung, Kyoung-Jae;Lee, Seok-Geun;Dang, Jeong-Jeung;Choi, Gil-Hwan;Hwang, Y.S.;Kim, Chul-Young;Park, Young-Jun
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • The application of appropriate rehabilitation methods can improve the efficiency of clogged wells and extend their life. In this paper, we study the feasibility of well cleaning using high-voltage pulsed discharge, in which electrical energy is used to produce impulsive pressure in water, in contrast to conventional methods that employ chemical or pneumatic energy sources. This technique utilizes the compressive shock wave generated by the expansive force of hot, dense plasma that is produced during a pulsed discharge in the gap between electrodes immersed in water. Compared with conventional techniques, this method is simple, and easy to handle and control. Using a capacitive pulsed power system with an electrical energy of 200 J, an impulsive pressure of 10.7 MPa is achieved at the position 6 cm away from the discharge gap. The amplitude of the impulsive pressure was easily controlled by adjusting the charging voltage of the capacitor and was almost linearly proportional to peak discharge current. The technique achieved good results in cleaning feasibility tests with mock-up specimens similar to clogged well screens.

Evaluation of Rock Damage Zone Using Seismic Logging Method (탄성파 점층법을 이용한 암반손상대 평가)

  • Kang Seong-Seung;Hirata Atsuo;Obara Yuzo;Haraguchi Naoyuki
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.50-57
    • /
    • 2006
  • Development of structures such as slope and tunnel, waste disposal, oil and LPG storages, and underground power house and so on, is increasing with the year. The method for appropriate estimation of rock state such as fresh or damaged rocks is also requested with increasing structural development. On these purposes, seismic logging system, which is a simple and easy way for handling as well as small and light, has been developed. Seismic logging method is one of logging tests, which is able to evaluate the state of rock mass with various shapes and is possible to obtain the relatively accuracy data at situ state. In addition, seismic logging method is at to apply to estimate structural behavior, before and after support installed. According to the results obtained from this study, firstly, it is clear that the extent of damage in rock slope due to blasting is able to be evaluated with quantity using seismic logging method, moreover to decide the damage zone in rock slope reasonably. Secondly, it is expected that installing depth of support is able to be decided more effectively and economically, using the results of seismic logging data. Finally, seismic logging method is also able to be applied safety supervision of structures, before and after support installed.