Prediction of Potential Risk Posed by a Military Gunnery Range after Flood Control Reservoir Construction

홍수조절지 건설 후 사격장 주변지역의 위해성예측 사례연구

  • Ryu, Hye-Rim (Department of Civil, Urban and Geosystem Engineering, Seoul National University) ;
  • Han, Joon-Kyoung (Department of Civil, Urban and Geosystem Engineering, Seoul National University) ;
  • Nam, Kyoung-Phile (Department of Civil, Urban and Geosystem Engineering, Seoul National University) ;
  • Bae, Bum-Han (Department of Civil and Environmental Engineering, Kyungwon University)
  • 류혜림 (서울대학교 공과대학 지구환경시스템공학부) ;
  • 한준경 (서울대학교 공과대학 지구환경시스템공학부) ;
  • 남경필 (서울대학교 공과대학 지구환경시스템공학부) ;
  • 배범한 (경원대학교 토목환경공학부)
  • Published : 2007.02.28

Abstract

Risk assessment was carried out in order to improve the remediation and management strategy on a contaminated gunnery site, where a flood control reservoir is under construction nearby. Six chemicals, including explosive chemicals and heavy metals, which were suspected to possess risk to humans by leaching events from the site were the target pollutants for the assessment. A site-specific conceptual site model was constructed based on effective, reasonable exposure pathways to avoid any overestimation of the risk. Also, conservative default values were adapted to prevent underestimation of the risk when site-specific values were not available. The risks of the six contaminants were calculated by API's Decision Support System for Exposure and Risk Assessment with several assumptions. In the crater-formed-area(Ac), the non-carcinogenic risks(i.e., HI values) of TNT(Tri-Nitro-Toluene) and Cd were slightly larger than 1, and for RDX(Royal Demolition Explosives), over 50. The total non-carcinogenic risk of the whole gunnery range calculated to a significantly high value of 62.5. Carcinogenicity of Cd was estimated to be about $10^{-3}$, while that of Pb was about $5\;{\times}\;10^{-4}$, which greatly exceeded the generally acceptable carcinogenic risk level of $10^{-4}{\sim}10^{-6}$. The risk assessment results suggest that an immediate remediation practice for both carcinogens and non-carcinogens are required before the reservoir construction. However, for more accurate risk assessment, more specific estimations on condition shifts due to the construction of the reservoir are required, and more over, the effects of the pollutants to the ecosystem is also necessary to be evaluated.

본 연구는 경기도 소재 모 사격장의 주요 오염물질 여섯 가지에 대하여 홍수조절지가 건설된 이후 사격장 주변지역의 위해성을 예측하기 위하여 수행되었다. 해당 지역의 주요 오염물질 중 인체에 독성이 있는 화약물질 3종과 중금속 3종을 대상물질로 선정하였으며, 오염의 정도와 토지의 이용용도에 따라 네 지역으로 나누어 평가를 실시하였다. 위해성이 과대평가되는 것을 피하기 위하여 대상지역의 인문사회학적 특성 및 지반환경공학적 특성을 기반으로 노출경로모델(Conceptual Site Model)을 작성하였으며 각 노출경로에 따른 오염물질 이동모델 및 위해성 평가는 API's DSS(American Petroleum Institute's Decision Support System)를 이용하였다. 수용체나 지역의 특성을 하나의 값으로 대표할 수 없는 경우 위해성이 과소평가되는 것을 방지하기 위하여 가장 안전한 값을 사용하였다. 위해성 예측결과, 피탄지인 Ac 지역에서 TNT(Tri-Nitro-Toluene)와 카드뮴의 비발암위해도가 1을 조금 넘고, RDX(Royal Demolition Explosives)의 경우 50이 넘어, 대상지역 전체에 대한 총 비발암위해도는 62.828라는 매우 큰 값을 나타내었다. 한편, 발암위해도는 납이 약 $5\;{\times}\;10^{-4}$, 카드뮴이 약 $1\;{\times}\;10^{-3}$으로, 일반적으로 받아들여지는 발암위해도의 적정수준인 $10^{-4}{\sim}10^{-6}$에 비하여 $5{\sim}10$ 배 정도 크게 평가되었다. 이러한 위해성평가 결과를 통하여, 해당지역에 홍수조절지를 건설하기 전에 비발암물질과 발암물질 모두에 대한 즉각적인 복원사업이 진행되어야 하며, 홍수조절지 건설 후에도 사격장이 계속 운영될 경우 적절한 오염물질의 관리정책이 필요함을 알 수 있었다.

Keywords

References

  1. 건설교통부, 한국수자원공사, 2005, 군남홍수조절지 건설사업 환 경영향평가서(초안), 건설교통부, 서울
  2. 연세대학교 환경공해연구소, 1995, 환경위해성평가 및 관리기술 : 수질오염물질의 위해성평가 및 관리 기술, 환경부, 서울
  3. 연세대학교 환경공해연구소, 2001, 환경위해성평가 및 관리기술 : 환경오염물질의 위해성 통합 평가 및 시스템 개발, 환경부, 서울
  4. Alexander, M., 1995, How toxic are toxic chemicals in soil?, Environ. Sci. Technol., 29(11), 2713-2717 https://doi.org/10.1021/es00011a003
  5. American Petroleum Institute, 1999, API's Decision Support System for Exposure and Risk Assessment (DSS) Version 2.0
  6. Agency for Toxic Substances and Disease Registry (ATSDR), 1997, Toxicological Profile for HMX, U.S. Department of Health and Human Services, Atlanta, GA
  7. Azar, A., Trochimowicz, H.J., and Maxfield, M.E., 1973, Review of lead studies in animals carried out at Haskell Laboratory- Two year feeding study and response to hemorrhage study. In: Barth D., Berlin, A., Engel, R., Recht, P. and Smeets, J. Ed. Environmental Health Aspects of Lead, Proceedings International Symposium, October 1972, Amsterdam, The Netherlands. Commission of the European Communities, Luxemberg, 199-208
  8. Best, E., Sprecher, S., Larson, S., Fredrickson, H., and Bader, D., 1999, Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Removal, mass balances, and fate in groundwater of TNT and RDX, Chemosphere, 38, 3383-3396 https://doi.org/10.1016/S0045-6535(98)00550-5
  9. Cooper, W.C. and Gaffey, W.R., 1975, Mortality of lead workers, Proceedings of the 1974 Conference on Standards of Occupational Lead Exposure, J.F. Cole, Ed., February, 1974, Washington, DC. J. Occup. Med. 17, 100-107 https://doi.org/10.1097/00043764-197502000-00012
  10. Johnson M.S. and McAtee M.J., 2000, Wildlife Toxicity Assessment for 2,4,6-Trinitrotoluene, U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM) Project Number 39-EJ-1138-00, Aberdeen Proving Ground, MD
  11. Kasprzak, K.S., Hoover, K.L., and Poirier, L.A., 1985, Effects of dietary calcium acetate on lead subacetate carcinogenicity in kidneys of male Sprague-Dawley rats, Carcinogenesis, 6(2), 279-282 https://doi.org/10.1093/carcin/6.2.279
  12. Khan, F.I. and Husain, T., 2001, Risk-based monitored natural attenuation-a case study, J. Hazard. Mater., B85, 243-272
  13. Koller, L.D., Kerkvliet, N.I., and Exon, J.H., 1986, Neoplasia induced in male rats fed lead acetate, ethyl urea and sodium nitrate, Toxicol. Pathol., 13, 50-57 https://doi.org/10.1177/019262338501300107
  14. MacDonald, J.A., 2000, Evaluating Natural Attenuation for Groundwater Cleanup, Environ. Sci. Technol., 34, 346A-353A https://doi.org/10.1021/es003359w
  15. McGraph, D., Zhang, C.S., and Carton, O., 2004, Geostatistical analyses and hazard assessment on soil lead in Silvermines, area Ireland, Environ. Pollut., 127, 239-248 https://doi.org/10.1016/j.envpol.2003.07.002
  16. Salice, C.J. and Holdsworth, G., 2001, Wildlife Toxicity Assessment for 1,3,5-Trinitrohexahydro-1,3,5-Triazine (RDX), U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM), Project Number 39-EJ1138-01B, Aberdeen Proving Ground, MD
  17. Takenaka, S., Oldiges, H., Konig, H., Hochrainer, D., and Oberdoerster, G., 1983, Carcinogenicity of cadmium aerosols in Wistar rats, J. Natl. Cancer Inst., 70, 367-373
  18. Thun, M.J., Schnorr, T.M., Smith, A.B., and Halperin, W.E., 1985, Mortality among a cohort of U.S. cadmium production workers: An update, J. Natl. Cancer Inst., 74(2), 325-333
  19. US Army Center for Health Promotion and Preventive Medicine (USACHPPM), 2001, Wildlife Toxicity Assessment for HMX, Project Number 39-EJ-1138-01E, Aberdeen Proving Ground, MD
  20. US EPA, Updated Monthly, Integrated Risk Information System (IRIS), Environmental Protection Agency, National Center for Environmental Assessment, Office of Research and Development, OH, USA
  21. US EPA, 1996, CalTOX: A multimedia total exposure model for hazardous waste site-Technical Report
  22. US EPA, 1998, Health advisory for octahydro-1,3,5,7-tetranitro, 1,3,5,7-tetrazocine (HMX), PB90-273525, Prepared by the Office of Drinking Water, Washington, DC, for the U.S. Army Medical research and Development Command, Fort Detrick, Frederick, MD
  23. US EPA, 2005, EPI Suite v3.12, Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC)
  24. Van Esch, G.J. and Kroes, R., 1969, The induction of renal tumors by feeding of basic lead acetate to mice and hamsters, Br. J. Cancer, 23, 265-271