• Title/Summary/Keyword: 혼합플라스틱

Search Result 191, Processing Time 0.026 seconds

The Development of Electrostatic Separation Technique for Recycling of Life Circles Waste Plastic (생활계 폐플라스틱 재활용을 위한 정전선별 기술개발)

  • Jeon, Ho-Seok;Park, Chul-Hyun;Kim, Byoung-Gon;Park, Jai-Koo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.23-33
    • /
    • 2005
  • The development of material separation technique for waste plastic recycling are the necessary situation according to restrict by law the reclamation and incineration of waste plastic after 2004 year, pith enforcement of EPR (Extended Producer Responsibility) system. As the this study is the research on the development of electrostatic separation techniques for recycling of life circles waste plastic, it can improve separation efficiency according to development of charging material and charger. Therefore, we developed the charger and electrostatic separator to increase charging efficiency and material separation per object plastics, using these equipments, we removed PVC up to 99% from two kinds of mixed plastics. And in case of restricting PVC content such as PET, we developed the separation technique that can remove PVC up to 99.99% from PET with PET recovery about 80%. Also, as we separated over 98% for three kinds of mixed plastics, and then established material separation technique to increase recycling of plastic.

  • PDF

YOLOv7-based recyclable PET classification system (YOLOv7 기반 순환 가능한 PET 분류시스템)

  • Kim, MinSeung;Lee, SoYeon;Bae, MinJi;Yoon, Tae Jun;Kim, Dae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.495-497
    • /
    • 2022
  • COVID-19 상황이 지속됨에 따라 플라스틱 쓰레기 배출량은 해마다 기하급수적으로 증가하고 있는 반면 플라스틱 폐기물의 재활용률은 현저히 낮은 편에 속한다. 이러한 문제점들을 해결하기 위해 국가적으로 여러 플라스틱 폐기물 중 순환 가능한 PET를 분리하여 수거하고자 하는 노력을 하고 있다. 하지만, 현재 대량의 플라스틱 폐기물은 수거되는 시점부터 여러 폐기물과 혼합된 형태로 재활용 센터에 수거되어 추가 분류하는 인적자원이 요구되는 문제점이 존재한다. 따라서 본 논문에서는 이러한 한계점들을 해결하기 위해 AI 기술 중 하나인 Multi-Object Detection의 YOLOv7 모델을 적용하여 실시간으로 PET에 부착된 객체들을 탐지함으로써 순환 가능한 PET만을 분류하는 YOLOv7 기반 순환 가능한 PET 분류시스템을 설계 및 구현한다.

Development of Oxo-biodegradable Bio-plastics Film Using Agricultural By-product such as Corn Husk, Soybean Husk, Rice Husk and Wheat Husk (농산부산물인 옥피, 대두피, 왕겨, 소맥피를 이용한 산화생분해 바이오플라스틱 필름 개발)

  • You, Young-Sun;Kim, Mi-Kyung;Park, Myung-Jong;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2014
  • Biomass-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. This article described the effect of the additions of oxo-biodegradable additive, 4 kinds of plant biomass, unsaturated fatty acid, citric acid in the properties of polyethylene films. Bio films were prepared using a variety of biomasses and tested for feasibility as a food packaging film. Mechanical properties such as tensile strength and percent elongation at break were evaluated. Husk biomasses from such as corn, soybean, rice, and wheat were pulverized using air classifying mill (ACM) and four different types of packaging films with thickness of $50{\mu}m$ were prepared using the pulverized biomass and low density polyethylene/linear low density polyethylene. The packaging film with wheat husk biomass was found to have greater mechanical properties of elongation and tensile strength than the other samples. Biodegradability of bio film was measured to be 51.5% compared to cellulose.

그래핀 소재를 기반으로 하는 K-Propeller 모형 개발

  • 유장욱;정찬대;노창균
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.162-163
    • /
    • 2021
  • 그래핀수지로 기존에 황동(Ni-Al-Bronze) 프로펠러 대체 가능 제품의로 고가의 황동을 그래핀수지 특히 재생 플라스틱 활용으로 저가로 공급 가능하다. 또한, 재활용이 가능한 친환경 프로펠러임, 가벼운 소재를 이용하여 연료 효율 증대, 연료 효율을 향상시켜 연안해운 저탄소 실현, 마찰저항을 최소화하여 선박의 추진성능 개선, 해양생물 부착 방지(방오기능)를 통한 프로펠러 수명연장 기대, 프로펠러 검사 및보수 유지비용 절약 기대, 향후 폐기물에 그래핀을 혼합한 재생 자재로 활용 가능이 크다.

  • PDF

Mechanical Properties of Plastic Waste/Cellulose Waste Composites (폐플라스틱/폐섬유소 복합체의 기계적 물성)

  • Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • Mechanical properties of the commingled waste plastics filled with waste newspaper were studied. To improve adhesion at the interface, abietic acid was used. Tensile strength increased with fiber concentration. However the abietic acid did not have any influence on the strength. Tensile strain and impact strength as well decreased with increasing fiber level in the composite, but the abietic acid at low level of concentration with low level of fiber dramatically improved both properties. The reason seemed to be attributed to double-chemical nature of abietic acid.

Mechanical Properties of Plastic Waste / Ground Rubber Tire Composite (폐플라스틱/폐타이어분말 복합체의 기계적 물성)

  • Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.294-300
    • /
    • 2004
  • Mechanical properties of the commingled waste plastics filled with ground rubber tire were studied. To improve adhesion at the interface, trans-octylene rubber(TOR) was added. With increasing the rubber level, first, due to their inherent incompatibility, the tensile and the compressive strength decreased but tensile strain and impact strength increased. Then, as TOR added, the samples showed still the same strain but the tensile, impact, and compressive strength as well increased markedly Variation of the properties by addition of TOR seemed to be attributed to the dual character of TOR.

Scintillation Properties of Acrylate Based Plastic Scintillator by Photoploymerization Method (아크릴레이트 기반 광중합 플라스틱 섬광체의 섬광 특성)

  • Kim, Sunghwan;Lee, JoonIl
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.637-642
    • /
    • 2016
  • In this study, we prepared and characterized a acrylate based UV-curable plastic scintillator. It was used co-polymers TMPTA, DHPA and Ultima $Gold^{TM}$ LLT organic scintillator. The emission spectrum of the plastic scintillator was located in the range of 380~520 nm, peaking at 423 nm. And the scintillator is more than 50% transparent in the range of 400~800 nm. The emission spectrum is well match to the quantum efficiency of photo-multiplier tube and the fast decay time of the scintillation is 12 ns, approximately. This scintillation material provides the possibility of combining 3D printing technology, and then the applications of the plastic scintillator may be expected in human dosimetry etc.

Study on the biodegradable PLA sheet with multiple functionalities (복합기능성 생분해 PLA 시트에 관한 연구)

  • Lee, KyuDong;Kim, JongKyun;Lee, KyuDeug;Zun, Hyungdo;Kim, ChiGon;Yoon, KyungBae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.341-346
    • /
    • 2019
  • The study aims to provide a study on the mixing ratios and manufacturing methods of biodegradable PLA sheets for mid - term introduction, A 3-layer process was introduced to produce a multifunctional multi-layer structure sheet having improved heat resistance, impact resistance and transparency while having anti-fogging functionality as a biodegradable PLA sheet used for the purpose of anti-fogging function. Inner layer, core layer and outer layer were mixed and extruded. The inner layer and core layer were studied for a biodegradable PLA multi-layer sheet structure having inner hardness and high heat resistance and outer layer for imparting antifogging function. By applying the results of this study, plastic PLA properties and heat-resistant temperature can be improved to replace and expand plastics.

Analysis on Thermogravimetric Characteristics about Copyrolysis of Waste Wood Chip and Linear Low Density Polyethylene (선형 저밀도 폴리에틸렌과 폐목재 우드칩 혼합열분해의 열중량 특성 분석)

  • Lee, Young-Man;Bae, Wookeun;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.87-90
    • /
    • 2011
  • Copyrolysis of biomass/plastic mixture was carried out from room temperature to $600^{\circ}C$ with varing the heating rates of 10, 20, and $30^{\circ}C/min$ using a thermogravimetric analyzer. Waste wood chip (WWC) and linear low density polyethylene (LLDPE) were selected as a biomass and plastic, respectively. Individual pyrolysis temperature ranges were $430{\sim}550^{\circ}C$ and $230{\sim}600^{\circ}C$ for LLDPE and WWC, respectively. For the copyrolysis of WWC and LLDPE, the decomposition temperature range of WWC was not varied, while the decomposition temperature range of LLDEP was increased to a higher temperature. The results imply that the interaction might occur between LLDEP and WWC during copyolyis of LLDPE and WWC.