DOI QR코드

DOI QR Code

Development of Oxo-biodegradable Bio-plastics Film Using Agricultural By-product such as Corn Husk, Soybean Husk, Rice Husk and Wheat Husk

농산부산물인 옥피, 대두피, 왕겨, 소맥피를 이용한 산화생분해 바이오플라스틱 필름 개발

  • Received : 2014.05.23
  • Accepted : 2014.06.23
  • Published : 2014.09.30

Abstract

Biomass-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. This article described the effect of the additions of oxo-biodegradable additive, 4 kinds of plant biomass, unsaturated fatty acid, citric acid in the properties of polyethylene films. Bio films were prepared using a variety of biomasses and tested for feasibility as a food packaging film. Mechanical properties such as tensile strength and percent elongation at break were evaluated. Husk biomasses from such as corn, soybean, rice, and wheat were pulverized using air classifying mill (ACM) and four different types of packaging films with thickness of $50{\mu}m$ were prepared using the pulverized biomass and low density polyethylene/linear low density polyethylene. The packaging film with wheat husk biomass was found to have greater mechanical properties of elongation and tensile strength than the other samples. Biodegradability of bio film was measured to be 51.5% compared to cellulose.

식물로부터 유래하는 바이오매스를 25% 이상 함유하는 바이오 베이스 플라스틱은 탄소배출을 억제하는 효과가 있고, 한정된 자원인 석유의 소비량을 줄일 수 있으며, 산화생분해 첨가제를 추가 적용하면 폐기 후에는 미생물에 의해 생분해(Biodegradable)되기 때문에 친환경적인 소재이다. 본 연구에서는 폴리에틸렌에 산화생분해 첨가제, 4종류 식물체 바이오매스, 불포화 지방산, 구연산을 첨가하여 생분해성 및 물성변화를 관찰하였다. 초기 신장율과 인장강도 등의 물성이 우수한 자연에 분해되는 바이오 플라스틱 필름을 제조하여 식품포장재로서의 제품 안전성을 시험하였다. 옥피, 대두피, 왕겨, 소맥피의 식물체를 Air classifying mill로 분체한 후, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 기타 첨가제를 고속혼합기에서 혼합한 후, 호퍼에 투입한 다음 용융혼합하면서 다이스로 압출하여 4 가지 다른 형태의 두께 $50{\mu}m$의 바이오 필름을 제조하였다. 기계적 물성으로 인장강도 및 신장율을 측정하였으며, 생분해 실험을 실시하였다. 옥피, 대두피, 왕겨, 소맥피로 제조된 필름 중 소맥피로 제조된 필름의 인장강도 및 신장율이 가장 좋은 것으로 나타났다. 또한 산화생분해 시험방법에 의해 45일간 생분해 테스트를 한 결과 표준물질인 셀룰로오스 분말 대비 51.5%의 생분해를 나타내었다.

Keywords

References

  1. Guillet, J. E., "Polymers and Ecological Problems," Baum, B., and White, R. A. (eds.), Plenum Press, New York, 1973, pp. 45-60.
  2. Brown, D. T., "Plastic Waste Management," Mustafa, N. (ed.), Marcel Dekker Inc., New York, 1993, pp. 1-35.
  3. Garcia, C., Hernandez, T., and Costa, F., "Comparison of Humic Acids Derived from City Refuse with More Developed Humic Acids," Soil Sci. Plant. Nutr., 38, 339-346 (1992). https://doi.org/10.1080/00380768.1992.10416498
  4. Huang, J. C., Shetty, A. S., and Wang, M. S., "Biodegradable Plastics, A Review," Adv. Polym. Technol., 10, 23-30 (1990). https://doi.org/10.1002/adv.1990.060100103
  5. Bloembergen, S., David, J., Geyer, D., Gustafson, A., Snook, J., and Narayan, R., "Biodegradation and Composting Studies of Polymeric Materials. In: Biodegradable Plastics and Polymers," Doi, Y., and Fukuda, K. (eds.). Osaka, 1993, pp. 601-609.
  6. Doane, W. M., "USDA Research on Starch-based Biodegradable Plastics," Starch, 44, 292-295 (1992).
  7. Scott, G., "Photo-biodegradable Plastics: Their Role in the Protection of the Environment," Polym. Degrad. Stabil., 29, 135-154 (1990). https://doi.org/10.1016/0141-3910(90)90026-4
  8. Albertsson, A. C., Barenstedt, C., and Karlsson, S., "Susceptibility of Enhanced Environmentally Degradable Polyethylene to Thermal and Photo-oxidation," Polym. Degrad. Stabil., 37, 163-171 (1992). https://doi.org/10.1016/0141-3910(92)90080-O
  9. Lee, S. I., Sur, S. H., Hong, K. M., Shin, Y. S., Jang, S. H., and Shin, B. Y., "A Study on the Properties of Fully Biophotodegradable Composite Film," J. Int. Industrial Technol., 29, 129-134 (2001).
  10. Chung, M. S., Lee, W. H., You, Y. S., Kim, H. Y., and Park, K. M., "Manufacturing Multi-Degradable Food Packaging Films and Their Degradability," Korean J. Food Sci. Technol., 35(5), 877-883 (2003).
  11. Lee, W. K., "Carbon Dioxide-reducible Biodegradable Polymers," Clean Technol., 17(3), 191-200 (2011).
  12. Jang, S. H., "A Study on Morphology and Mechanical Properties of Biodegradable Polymer Nanocomposites," Clean Technol., 19(4), 401-409 (2013). https://doi.org/10.7464/ksct.2013.19.4.401
  13. KFDA. Food Codes, Korean Food and Drug Administration, Seoul, Korea, 2001, pp. 28-60.
  14. ASTM D 6866-10, "Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis," USA (2010).
  15. ASTM D 6954-04, "Standard Guide for Exposing and Testing Plastics that Degrade in the Environment by a Combination of Oxidation and Biodegradation," USA (2004).
  16. ASTM D 5208-01, "Standard Practice for Fluorescent Ultraviolet (UV) Exposure of Photodegradable Plastics," USA (2001).

Cited by

  1. Comparison of thermal and optical properties and flowability of fossil-based and bio-based polycarbonate vol.25, pp.11, 2017, https://doi.org/10.1007/s13233-017-5153-2
  2. National Certification Marks and Standardization Trends for Biodegradable, Oxo-biodegradable and Bio based Plastics vol.21, pp.1, 2015, https://doi.org/10.7464/ksct.2015.21.1.001
  3. International Trends in Development, Commercialization and Market of Bio-Plastics vol.21, pp.3, 2015, https://doi.org/10.7464/ksct.2015.21.3.141
  4. Comparison of Rheological Characteristics and Mechanical Properties of Fossil-Based and Bio-Based Polycarbonate vol.28, pp.4, 2014, https://doi.org/10.1007/s13233-020-8093-1
  5. 바이오매스 기반 종이 플라스틱의 제조 및 응용에 대한 고찰 vol.26, pp.1, 2014, https://doi.org/10.20909/kopast.2020.26.1.25
  6. Preparation of Tuna Skin Byproduct Film Containing Pinus thunbergii Cone Extract vol.26, pp.4, 2014, https://doi.org/10.15616/bsl.2020.26.4.360