• Title/Summary/Keyword: 혼합모래

Search Result 353, Processing Time 0.02 seconds

A Study on Strength Characteristics of Sand-gravel Mixtures (모래-자갈 혼합토의 강도 특성에 관한 연구)

  • Park, Sung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.13-19
    • /
    • 2011
  • The strength of granular mixtures can be controlled by the majority of the mixture, fine grains. However, in some cases, the small amount of gravel in the mixture may influence the strength of the mixture. In this study, the effect of some dispersed gravels on strength of sand is evaluated. Gravels are embedded in the middle of each cemented sand layer. The size and number of embedded gravels varies. After two days curing, a series of unconfined compression tests is performed on the cemented sand with dispersed gravels. In addition to that, a series of direct shear tests is also carried out on clean sand with gravels to evaluate its friction angle. For the specimens with the same ratio of gravel weight of 7% in which gravel size and number are different, an unconfined compressive strength(UCS) of a specimen with gravels decreases up to 15% compared to a specimen without gravel and then increases with increasing gravel number. For specimens embedded with the same size of gravel, UCS decreases and then increases as a number of gravel increases. As a number of gravel increases, a friction angle of clean sand with gravels decreases up to $5^{\circ}$ and then recovers up to that of a specimen without gravel.

A study on the Evaluation of Permeability and Structure for Calcium Bentonite-Sand Mixtures (칼슘 벤토나이트-모래 혼합차수재의 투수 및 구조 특성에 관한 연구)

  • Yun, Seong Yeol;An, Hyeon Kyu;Oh, Minah;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • This study was intended to evaluate the water permeability and structure for calcium bentonite-sand mixtures to utilize calcium bentonite as a liner. This study conducted physico-chemical properties tests, compaction tests, permeability test and Scanning Electron Microscopy analysis (SEM) analysis. It was found the higher the ratio of calcium bentonite, the lower the dry density with coefficient of permeability, and the higher the optimum moisture content. In particular, SEM analysis was found the higher the ratio of calcium bentonite, the higher the area of the montmorillonite particles. In conclusion, the optimum coefficient of permeability that finds the landfill liner condition (must be less than $1{\times}10^{-7}cm/sec$) was obtained when the ratio of calcium bentonite was 40% or higher. These findings may improve the understanding of the calcium bentonite as a liner. Calcium bentonite shows a similar permeability to sodium bentonite 7% when mixed at 40% or more. Therefore, it is considered that calcium bentonite can be utilized as a liner.

Effect of Cornstarch-Based Absorbent Polymer on the Growth of Cool Season Turfgrasses in Sand-Based Mixture (옥수수 전분이 주성분인 토양보습제 첨가가 모래 배양토에서 한지형 잔디의 생육에 미치는 영향)

  • Choi, Joon-Soo;Yang, Geun-Mo;Ahn, Sang-Hyun;Cho, Yun-Sik
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.75-84
    • /
    • 2008
  • This study was carried out to examine the effects of cornstarch-based absorbent polymer (CAP) on the growth of cool season turfgrasses in sand-based soil mixture. Kentucky bluegrass + perennial ryegrass mixtures seeded at May 18 in 2006 on sand-based soil mixture. Sand + peat (5%, v/v), sand + CAP $20g{\cdot}m^{-2}$, sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v), and sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) mixtures were compared. Ground coverage of sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v), and sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) treatments showed 50% at a month after seeding. But the coverage of sand + peat (5%, v/v), sand + CAP $20g{\cdot}m^{-2}$ resulted in 36.7%. Mixing of CAP with sand was considered to be efficient method for increasing ground coverage as much as peat. Dry weight of turfgrass tiller at sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v), and sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) were also significantly higher than sand + peat (5%, v/v), sand + CAP $20g{\cdot}m^{-2}$ mixtures at a month after seeding. Soil water retention at the sand + CAP $20g{\cdot}m^{-2}$, sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) mixing were lower than sand + peat (5%, v/v) and sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v) during the dry periods. From the results, the mixing of CAP with sand is useful to increased ground coverage of kentucky bluegrass and perennial ryegrass.

Evaluation of Cyclic Shear Strength Characteristics of Sands Containing Fines (모래-세립분 혼합토에 대한 반복전단강도특성 평가)

  • Kim, Uk-Gie;Kim, Dong-Wook;Lee, Joon-Yong;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.31-40
    • /
    • 2012
  • In most design codes, soils are classified as either sandy or clayey soils, and appropriate design equations for each soil type are used to estimate their soil behaviour. However, sand-fine mixtures, which are typically referred to as intermediate soils, are somewhere at the middle of sandy or clayey soils, and therefore a unified interpretation of soil behaviour is necessary. In this paper, a series of cyclic shear tests were carried out for three different combinations of sand-fine mixtures with various fines content. Silica-sand mixture and fines (Iwakuni natural clay, Tottori silt, kaolinite) were mixed together with various mass ratios, while paying attention to the changes of void ratios expressed in terms of sand structure. The cyclic shear strengths of the mixtures below the threshold fines content were examined with the increasing fines contents. As a result, as the fines contents increased, their cyclic deviator stress ratios decreased for dense samples while it increased for loose samples. Additionally, cyclic deviator stress ratio of the mixtures was estimated using the concept of equivalent granular void ratio.

Assessment of Bottom Ash Amendment on Soil and Turfgrass Qualities in Golf Course (석탄바닥재의 골프장 토양 및 잔디생육 개량 영향평가)

  • Lee, Ju-Young;Choi, Hee-Youl;Shim, Gyu-Yul;Yang, Jae-E
    • Proceedings of the Turfgrass Society of Korea Conference
    • /
    • 2011.02a
    • /
    • pp.25-32
    • /
    • 2011
  • 본 연구는 화력발전의 부산물로 발생하는 석탄바닥재가 골프장 사질 토양의 개량재로 사용 적합한지를 평가하기 위해 수행되었으며, 결과를 요약하면 다음과 같다. 1. 석탄바닥재의 화학성을 분석한 결과 총질소 0.34%, 가용성 인산 $52mgL^{-1}$, 치환성 칼륨 $51mgL^{-1}$ 뿐만 아니라 소량의 치환성 칼슘과 마그네슘을 함유하고 있어 식물생육에 이롭고, 유해중금속함량은 Cd, $Cr^{6+}$, Pb, Ni, As는 $1mgL^{-1}$ 이하, Cu 농도는 $1.25mgL^{-1}$ 검출되어 토양환경보전법의 토양오염우려기준 이하이므로 석탄바닥재 재활용으로 인한 토양오염 가능성은 매우 낮은 것으로 판단된다. 2. 모래 토양에 석탄바닥재를 부피비로 0~50% 비율로 혼합한 시료의 투수계수와 유효수분함량을 측정한 결과 석탄바닥재 혼합비율이 증가할수록 투수계수는 유의성 있게 감소하고 유효수분함량은 유의성 있게 증가해 석탄바닥재가 모래 토양의 낮은 수분보유력을 개선하는 효과가 있음을 확인하였다. 3. 모래 토양에 석탄바닥재를 부피비로 0~50% 비율로 혼합한 시료를 잔디식재층으로 조성한 라이시미터에 잔디종자 파종 후 약 4개월 뒤 잔디밀도가 완전히 형성된 후에 시비 후 3일 간격으로 채취한 용탈수를 분석한 결과 1일과 4일 후에 채취한 초기 용탈수에서는 석탄바닥재 혼합비율이 높을수록 $NO_3-N$, $NH_4-N$ 및 K함량이 유의성 있게 감소했으며, 대조구에 비해 석탄바닥재 혼합비율이 높은 처리구일수록 $NO_3-N$, $NH_4-N$ 및 K함량이 용탈수 채취기간 동안 지속적으로 용탈되었다. 이 결과로 석탄바닥재가 모래 토양의 낮은 양분 보유력을 개선하는데 효과적이고 석탄바닥재처리가 대조구에 비해 오랫동안 식물 생육에 필요한 양분을 공급하는 효과가 있음을 확인하였다. 4. 골프장 그린상구조와 동일한 시험포장을 만들고 모래 토양에 석탄바닥재 10%와 20% 그리고 피트, 액시스, 이소라이트를 부피비로 10% 비율로 혼합한 시료를 잔디식재층으로 조성하고 크리핑 벤트그래스(Agrostis paulstris Huds), Penn A-4 $10gm^{-2}$을 파종한 후에 처리구별로 잔디 품질을 평가하기 위해 잔디 밀도, 뿌리길이, 색상 및 시각적 품질을 조사한 결과 석탄바닥재 처리구는 기존에 사용하는 개량제인 피트, 액시스, 이소라이트 처리구와 동등한 잔디생육 촉진 효과가 있는 것으로 조사되었다. 5. 결론적으로 석탄바닥재는 골프장 토양의 물리적 특성과 화학적 특성을 개선하고 잔디생육에 필요한 양분을 공급하는데 효과적인 토양개량재라고 할 수 있다.

  • PDF

Characterization of Cemented Sand for Building of Levee (하천제방축조재료로서 시멘트혼합토의 특성)

  • Jeong, Woo-Seob;Kim, Yung-Su
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.4 s.23
    • /
    • pp.29-36
    • /
    • 2006
  • There are loss of lives and properties in many areas of the basin of the Nak-Dong river by the unusual weather and the localized heavy rain recently, and many difficulties of levee construction for prevention of disasters by acquisition of material and expensive transportation. In this research, The factors and causes which affect the strength through laboratory tests about the cemented sand that is mixed a few portland cement and sand of Nak-Dong river bed was researched closely. For providing the fundamental data which is needed in design and analysis of levee material, the compaction test and the standard triaxial compression test etc was conducted., analyzed compression strength and characteristic of stress-strain behavior in which the influence of cement content.

Permeability and Consolidation Characteristics of Clayey Sand Soils (점토 함유량에 따른 점토질 모래의 투수 및 압밀 특성 평가)

  • Kim, Kwangkyun;Park, Duhee;Yoo, Jin-Kwon;Lee, Janggeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.61-70
    • /
    • 2013
  • Evaluation of permeability and coefficient of consolidation of clayey sand is critical in analyzing ground stability or environmental problems such as prediction of pollutant transport in groundwater. In this study, permeability tests using a flexible wall permeameter are performed to derive the coefficient of consolidation and permeability of reconstituted soil samples with various mixing ratios of kaolin clays and two different types of sands, which are Jumunjin and Ottawa sands. The test results indicate that the coefficient of consolidation and permeability plots linearly against clay contents in semi-log scale graphs for low clay mixing ratios ranging between 10 to 30%. It is also demonstrated that coefficient of consolidation and permeability of sand and clay mixture are dependent on the soil structure. Contrary to previous findings, the permeability is shown to be independent of the void ratio at low mixing ratios, which can be classified as non-floating fabric. The permeability decreases with the void ratio for floating fabric.

A Study on a Compression Index for Settlement Analysis of SCP Treated Ground Using Back Analysis (역해석을 이용한 모래다짐말뚝(SCP)으로 개량된 연약점토지반의 압축지수 결정에 관한 연구)

  • Hwang, Sungpil;Im, Jongchul;Kwon, Jeonggeun;Kang, Yeounike;Joo, Ingon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.5-14
    • /
    • 2010
  • The paper processed settlement analysis using Finite Elements Method(FEM). Because Stress Distribution Ratio has to be decreased, for settlement analysis of soft clay deposit improved by sand compaction piles(SCP). Back analysis was processed comparing the measured settlements of laboratory model tests and finite element analysis where the SCP treated area was assumed as mixed ground with clay deposit rather than being a composite ground. The paper proposes a methodology which employs a compression index($C_c$) for settlement analysis of soft clay deposit improved by sand compaction piles from the back analysis. This approach is applied to a field measurement case(A revetment founded on the SCP improved clay deposit with the replacement ratio of 45%).

Influence of Paper Mill Sludge and Briquet Ash on the Growth of Zoysiagrass (제지(製紙)슬러지와 연탄재가 들잔디의 생육(生育)에 미치는 영향(影響))

  • Ku, Ja Hyeong;Kim, Tae Il;Ahn, Joo Won;Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.2
    • /
    • pp.153-160
    • /
    • 1992
  • To investigate the potential of paper mill sludge and briquet ash as cultural media in turfgrass, zoysiagrass was grown in the mixtures prepared with paper mill sludge and briquet ash. The mixtures were consisted of sludge and briquet ash in the ratio by volume 3:1, 2:1, 1:1, 1:2, and 1:3 in the order. To compare the growth responses, some plants were grown in the medium containing sand(3), field soil(1) and peatmoss (1) by volume anti regarded as control. 1. Activated sludge mixed with sand increased plant height, fresh weight, and dry weight more than 1.5-2.0 times compared to those of the control. The highest plant growth was shown in mixtures containing 67% activated sludge. 2. Plant density per $100cm^2$ and chlorophyll content were higher in all mixtures containing activated sludge than control. 3. The growth of zoysiagrass was reduced along with the increase of non-activated sludge ratio, but no difference was found in chlorophyll content. 4. Plant height, fresh weight and dry weight were greater in activated sludge combined with sand compared to the briquet ash mixtures, but the difference of shoot density between two mixtures was not shown. 5. Even though non-activated sludge appeared not to be appropriate to the growth of seedlings, the number of tillers of plant propagated with rhizome was more increased compared to control when briquet ash content was less than 75%.

  • PDF

Undrained Shear Behavior of Sand with Dispersed Gravels (자갈이 포함된 모래의 비배수 전단거동)

  • Park, Sung-Sik;Kim, Young-Su;Sung, Hee-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5C
    • /
    • pp.209-218
    • /
    • 2010
  • In residual soils, large particles such as rock fragments or gravel are surrounded by sand or clay. The strength of such granular mixtures can be controlled by the concentration of fine or coarse grains. The percentage by weight, size or shape of gravel in the mixture that can control the strength of the mixture has not been clearly determined for various granular mixtures. In this study, the effect of dispersed gravels on the shear characteristics of sand was evaluated. Large and small gravels were inserted in the middle of each layer with moist Nakdong River sand and compacted into a cylindrical sample with five equal layers. Embedded gravel ratios by weight were 0, 3, 9, and 14%. After consolidation, a series of undrained triaxial compression tests was performed on Nakdong River sand with dispersed gravels. Maximum deviator stresses of the Nakdong River sand with large gravels decrease up to 38% as a percentage of embedded gravels increases. Such strength degradation decreases as a confining pressure increases. The maximum deviator stress increases as the percentage by weight of small gravel increases; at 3 or 9% of gravel weight it slightly increases but at 14% of gravel weight it increases up to 34%.