DOI QR코드

DOI QR Code

Evaluation of Cyclic Shear Strength Characteristics of Sands Containing Fines

모래-세립분 혼합토에 대한 반복전단강도특성 평가

  • Received : 2012.05.10
  • Accepted : 2012.07.06
  • Published : 2012.07.31

Abstract

In most design codes, soils are classified as either sandy or clayey soils, and appropriate design equations for each soil type are used to estimate their soil behaviour. However, sand-fine mixtures, which are typically referred to as intermediate soils, are somewhere at the middle of sandy or clayey soils, and therefore a unified interpretation of soil behaviour is necessary. In this paper, a series of cyclic shear tests were carried out for three different combinations of sand-fine mixtures with various fines content. Silica-sand mixture and fines (Iwakuni natural clay, Tottori silt, kaolinite) were mixed together with various mass ratios, while paying attention to the changes of void ratios expressed in terms of sand structure. The cyclic shear strengths of the mixtures below the threshold fines content were examined with the increasing fines contents. As a result, as the fines contents increased, their cyclic deviator stress ratios decreased for dense samples while it increased for loose samples. Additionally, cyclic deviator stress ratio of the mixtures was estimated using the concept of equivalent granular void ratio.

토질분류법에서 흙은 크게 사질토와 점성토로 분류되며, 실제 설계에서도 이와 같이 분류된 흙 종류에 따라 다른 예측식을 사용하여 흙의 거동을 평가하고 있다. 그러나, 모래-세립분 혼합토는 전형적으로 중간토(intermediate soil or transitional soil)로 구분되어 모래와 점토의 중간적인 성질을 나타내기 때문에, 이러한 혼합토에 대한 거동특성을 평가할 수 있는 기준이 필요하다. 본 논문에서는 입도분포를 조정한 특정 모래에 세 가지 종류의 세립분으로 구성된 다양한 세립분함유율을 갖는 시료를 대상으로 일련의 반복 삼축압축시험을 수행하였다. 모래가 골격을 이루는 간극비(골격간극비)를 고려하여, Silica sand와 세립분(Iwakuni natural clay, Tottori silt, kaolinite)을 다양한 건조 중량비로 혼합하여 그 특성을 파악하였으며, 실험결과로 전환 세립분함유율(threshold fines content)을 넘지 않는 혼합토의 반복전단강도를 세립분 함유율 증가에 따라 평가하였다. 그 결과, 반복 전단응력비는 세립분 함유율 증가에 따라 조밀한 시료에서는 감소, 느슨한 시료에서는 증가하는 결과를 나타냈으며, 혼합토의 반복전단응력비를 등가골격간극비의 개념을 이용하여 평가했다.

Keywords

References

  1. Adachi, M., Yasuhara, K., and Shimabukuro, A. (2000), "Influences of Sample Preparation Method on the Behavior of Non-plastic Silts in Undrained Monotonic and Cyclic Triaxial Tests", Tsuchi-to-Kiso, Vol.48, No.11, pp.24-27.
  2. Belkhatir, M., Arab, A., and Della, N. (2010), "Liquefaction Resistance of Chlef River Silty", Acta Polytechnica Hungarica, Vol.7, No.2, pp.119-137.
  3. Bouferra, R., and Shahrour, I. (2004), "Influence of Fines on the Resistance to Liquefaction of a Clayey Sand", Ground Improvement, Vol.8, No.1, pp.1-5. https://doi.org/10.1680/grim.2004.8.1.1
  4. Carraro, J. A. H., Prezzi, M. and Salgado, R. (2009), "Shear Strength and Stiffness of Sands Containing Plastic or Nonplastic Fines", Journal of Geotechnical Geoenvironmental Engineering, Vol.135, No.9, pp.1167-178. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:9(1167)
  5. Chang, N. Y., Yeh, S. T., and Kaufman, L. P. (1982), "Liquefaction Potential of Clean and Silty Sands" 3rd International Earthquake Microzonation Conference, Seattle, USA, Vol.2, pp.1017-1032.
  6. Dezfulian, H. (1982), "Effects of Silt Content on Dynamic Properties of Sandy Soils" Proceedings of the Eighth World Conference on Earthquake Engineering, San Francisco, USA, pp.63-70.
  7. Fei, H. C. (1991), "The Characteristics of Liquefaction of Silt", Soil Dynamics and Earthquake Engineering, Computational Mechanics Publications, South hampton, pp.293-302.
  8. Hwang, D. J., Yanagisawa, E., and Sugano, T. (1993), "Shear Characteristics of Silt Containing Sand", Journal of Japan Society of Civil Engineers(JSCE), No.463/III-38, pp.25-33.
  9. Hyodo, M., Kim, U. G., Nakata, Y., and Yoshimoto, N. (2010), "Effect of Fines on Undrained Shear Characteristics of Sand-Clay Mixtures", Journal of Japan Society of Civil Engineers (JSCE), Vol.66, No.1, pp.215-225.
  10. Ishihara, K. (1996), "Soil Behaviour in Earthquake Geotechnics", 1st ed., Oxford, Claredon Press.
  11. Ishihara, K., and Koseki, J. (1989), "Discussion on the Cyclic Shear Strength of Fines-Containing Sands", Earthquakes Geotechnical Engineering, Proceeding of the 11th International Conference on Soil Mechanics and Foundation Engineering, Rio De Janiero, Brazil, pp.101-106.
  12. Japanese Geotechnical Society (1992), "Intermediate Soil, Sand or Clay", Geo-Tech Note 2, pp.1-6.
  13. Kenny, T. C. (1977), "Residual Strengths of Mineral Mixture", Proceedings of the 9th International Conference Soil Mechanics, Tokyo1, pp.155-160.
  14. Kim, U. G., Ahn, T. B., and Hyodo, M. (2008), "Effect of Fines Content on the Cyclic Shear Characteristics of Sand-clay Mixtures", Journal of Korean Geotechnical Society (KGS), Vol.24, No.1, pp. 51-59.
  15. Koester, J. P. (1994), "The Influence of Fine Type and Content on Cyclic Strength", Ground failures under seismic conditions, Geotechnical special publication, No.44, ASCE, pp.17-33.
  16. Law, K. T. and Ling, Y. H. (1992), "Liquefaction of Granular Soils with Non-Cohesive and Cohesive Fines", Proceedings of the 10th world conference on earthquake engineering, Rotterdam, pp.1491-1496.
  17. Matsuo, O., (2004), "Simplified Procedure for Assessing Liquefaction Potential of Soils in the Specifications for Highway Bridges", Journal of Japan Society of Civil Engineers (JSCE) invited paper, No.757/III-66, pp.1-20.
  18. Mitchell, J. K. (1977), "Fundamentals of Soil Behaviour", 2nd edn, John Wiley Interscience NewYork, pp.172-189.
  19. Naeini, S. A., and Baziar, M. H. (2004), "Effect of Fines Content on Steady-State Strength of Mixed and Layered Samples of a Sand", Soil dynamic sand earthquake engineering, Vol.24, pp.181-187. https://doi.org/10.1016/j.soildyn.2003.11.003
  20. Seed, H. B., Idriss, I. M., and Arango, I. (1983), "Evaluation of Liquefaction Potential using Field Performance Data", Journal of Geotechnical Engineering, ASCE, Vol.109, No.3, pp.458-482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458)
  21. Shen, C. K., Vrymoed, J. L., and Uyeno, C. K. (1977), "The Effects of Fines on Liquefaction of Sands", Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol.2, pp.381-385.
  22. Thevanayagam, S., Shenthan, T., Mohan, S. and Liang, J. (2002), "Undrained Fragility of Clean Sands, Silty Sands, and Sandy Silty", Journal of geotechnical and geoenvironmental engineering, Vol.128, No.10, pp.849-859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
  23. Tronsco, J. H., and Verdugo, R. (1985), "Silt Content and Dynamic Behavior of Tailing Sands", Proceedings of the 12th International Conference on Soil Mechanics and Foundaton Engineering, San Francisco, USA, pp.1311-1314.
  24. Vaid, V. P. (1994), "Liquefaction of Silty Sands", Journal of ASCE, Ground failures under seismic conditions, Geotechnical special publication, No.44, pp.1-16.
  25. Xenaki, V. C., and Athanasopoulos, G. A. (2003), "Liquefaction Resistance of Sand-Silt Mixtures: an Experimental Investigation of the Effect of Fines", Soil Dynamics Earthquake Engineering, No.23, pp.183-194.
  26. Yamamoto, Y., and Hyodo, M. (1999), "Effect of Shearing Cyclic Frequency on Relationship Between Cyclic Shear strength and plastics index", Proceedings of the 34th Japanese Geotechnical Society (JGS) Conference, Vol.1, pp.1059-1060.
  27. Yasuda, S., and Soga, K. (1984), "Effect of Shearing Cyclic Frequency on Liquefaction Characteristic", Proceedings of the 19th Soil Mechanics and Foundation Engineering Conference, pp.549-550.
  28. Yasuda, S., Wakamatsu, K., and Nagase, H. (1994), "Liquefaction of Artificially Filled Silty Sands" Ground Failures Under Seismic Conditions, Geotechnical Special Publication Journal of ASCE, No.44, pp.91-104.

Cited by

  1. 모래 함유량이 점토의 액소성한계 및 전단강도에 미치는 영향 vol.30, pp.2, 2012, https://doi.org/10.7843/kgs.2014.30.2.65
  2. Effect of Gradation on the Compactability of Coarse-Grained Soils vol.24, pp.2, 2012, https://doi.org/10.1007/s12205-020-1936-7
  3. Experimental study of effect of gradation on compaction properties of rockfill materials vol.79, pp.6, 2020, https://doi.org/10.1007/s10064-020-01737-7