DOI QR코드

DOI QR Code

A study on the Evaluation of Permeability and Structure for Calcium Bentonite-Sand Mixtures

칼슘 벤토나이트-모래 혼합차수재의 투수 및 구조 특성에 관한 연구

  • Yun, Seong Yeol (Department of Environmental engineering, The University of Seoul) ;
  • An, Hyeon Kyu (Department of Environmental engineering, The University of Seoul) ;
  • Oh, Minah (Department of Environmental engineering, The University of Seoul) ;
  • Lee, Jai-Young (Department of Environmental engineering, The University of Seoul)
  • Received : 2018.12.20
  • Accepted : 2019.05.03
  • Published : 2019.06.30

Abstract

This study was intended to evaluate the water permeability and structure for calcium bentonite-sand mixtures to utilize calcium bentonite as a liner. This study conducted physico-chemical properties tests, compaction tests, permeability test and Scanning Electron Microscopy analysis (SEM) analysis. It was found the higher the ratio of calcium bentonite, the lower the dry density with coefficient of permeability, and the higher the optimum moisture content. In particular, SEM analysis was found the higher the ratio of calcium bentonite, the higher the area of the montmorillonite particles. In conclusion, the optimum coefficient of permeability that finds the landfill liner condition (must be less than $1{\times}10^{-7}cm/sec$) was obtained when the ratio of calcium bentonite was 40% or higher. These findings may improve the understanding of the calcium bentonite as a liner. Calcium bentonite shows a similar permeability to sodium bentonite 7% when mixed at 40% or more. Therefore, it is considered that calcium bentonite can be utilized as a liner.

본 연구에서는 칼슘 벤토나이트를 차수재로 활용하기 위해 칼슘 벤토나이트-모래 혼합물의 투수특성 및 구조를 평가하였다. 본 연구에서는 칼슘 벤토나이트와 모래에 대한 기본적인 물리 화학적 특성 분석, 다짐시험, 투수시험 및 전자주사현미경 분석(SEM)을 진행하였다. 칼슘 벤토나이트의 혼합 비율이 증가함에 따라 칼슘 벤토나이트-모래 혼합물의 건조 밀도, 투수계수는 낮아지고 최적함수비는 증가하였다. 특히, 전자주사현미경 분석은 칼슘 벤토나이트의 비율이 증가함에 따라 칼슘 벤토나이트 내 몬모릴로나이트의 면적이 증가하는 것을 확인하였다. 결론적으로, 칼슘 벤토나이트의 혼합비가 40% 이상일 때 매립시설의 차수재 조건($1.0{\times}10^{-7}cm/sec$ 이하)을 만족하였다. 본 연구는 차수재로 칼슘 벤토나이트의 이해도를 향상시킬 수 있다. 칼슘 벤토나이트는 40% 이상 혼합 시 나트륨 벤토나이트 7%와 비슷한 투수 특성을 나타낸다. 따라서 칼슘 벤토나이트는 차수재로써 활용이 가능하다.

Keywords

HKTHB3_2019_v18n2_1_f0001.png 이미지

Fig. 1. S mine calcium bentonite

HKTHB3_2019_v18n2_1_f0002.png 이미지

Fig. 2. Particle size distribution curve for calcium bentonite in this study

HKTHB3_2019_v18n2_1_f0003.png 이미지

Fig. 3. Sand

HKTHB3_2019_v18n2_1_f0004.png 이미지

Fig. 4. Particle size distribution curve for sand in this study

HKTHB3_2019_v18n2_1_f0005.png 이미지

Fig. 5. Automatic compaction tester

HKTHB3_2019_v18n2_1_f0006.png 이미지

Fig. 6. Mixture specimen in this study

HKTHB3_2019_v18n2_1_f0007.png 이미지

Fig. 7. Permeability meter

HKTHB3_2019_v18n2_1_f0008.png 이미지

Fig. 8. Structural characteristics of sand-calcium bentonite mixtures by mixing ratio

HKTHB3_2019_v18n2_1_f0009.png 이미지

Fig. 9. Structural characteristics of sodium bentonite (Koh et al., 2002)

Table 1. Physical properties of S mine calcium bentonite and sodium bentonite

HKTHB3_2019_v18n2_1_t0001.png 이미지

Table 2. Components of S mine calcium bentonite and sodium bentonite by X-ray fluorescence (XRF)

HKTHB3_2019_v18n2_1_t0002.png 이미지

Table 3. Components of sand by XRF

HKTHB3_2019_v18n2_1_t0003.png 이미지

Table 4. Physical properties of sand in this study

HKTHB3_2019_v18n2_1_t0004.png 이미지

Table 5. Type of mixing ratio of sand and calcium bentonite for this study

HKTHB3_2019_v18n2_1_t0005.png 이미지

Table 7. Compaction characteristics of sand-calcium bentonite mixtures

HKTHB3_2019_v18n2_1_t0006.png 이미지

Table 8. Compaction characteristics of sand-sodium bentonite mixtures

HKTHB3_2019_v18n2_1_t0007.png 이미지

Table 9. Permeability characteristics of sand-calcium bentonite mixtures

HKTHB3_2019_v18n2_1_t0008.png 이미지

Table 10. Permeability characteristics of sand-sodium bentonite mixtures

HKTHB3_2019_v18n2_1_t0009.png 이미지

References

  1. Bae J. S. (2000), A study on strength properties of claybentonite liner, Department of civil engineering, Sangju national university.
  2. Fukushima, Y. (1984), X-ray diffraction study of aqueous montmorillonite emulsions, Clays and Clay Minerals, Vol.32, No.4, pp.320-326. https://doi.org/10.1346/CCMN.1984.0320410
  3. Hong C. H. and Kim M. K. (2002), The Engineering Properties of Soil-Bentonite Liner from Chongju area, Journal of the Korean society for geosystem engineering, Vol.39, No.6, pp.452-461.
  4. JEOL. (2019), JSM-7100 F, https://www.jeolbenelux.com/JEOL-BV-News/PostId/15.
  5. Kim D. M. and Kim K. Y. (2006), An Engineering Characteristics of Weathered Granite Soil-Bentonite Mixtures, Journal of the Korean Geo-Environmental Society, Vol.6, No.6, pp.45-56.
  6. Kim, S. P. (2003), A study on permeability of natural clay, bentonite and cement compound liners, Department of environmental science, Keimyung university.
  7. Koh S. M., Son B. K., Song M. S., Park S. W and Lee S. H. (2002), Factors Controlling Some Physicochemical Properties of Bentonite, Journal of the Mineralogical Society of Korea, Vol.15, pp.259-272.
  8. KS F 2312, Test method for soil compaction using a rammer, Korea Standards Association.
  9. KS L 5100, Standard sand for testing strength of hydraulic cement mortars, Korea Standards Association.
  10. Lee J. B. (2006), Engineering characteristics of weathered soil mixed with bentonite, Department of Civil Engineering, Inha university.
  11. Lee J. H. (2010), Temperature Effect on the Swelling Pressure of a Domestic Compacted Bentonite Buffer, Journal of Nuclear Fuel Cycle and Waste Technology, Vol.8, No.3, pp.207-213.
  12. Lee J. M. and Lee J. Y (2001), A study on characteristics of hydraulic conductivity in the soil-bentonite mixed soils with compaction energy and swelling in the landfill, Journal of soil and groundwater environment, Vol.6, No.4, pp.61-72.
  13. Melissa C. Setz, Kuo Tian, Craig H. Benson and Sabrina L. Bradshaw. (2017), Effect of ammonium on the hydraulic conductivity of geosynthetic clay liners, Vol.45, No.6, pp.665-673. https://doi.org/10.1016/j.geotexmem.2017.08.008
  14. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF) (2012), Leachate prevention method at livestock burial site using soil admixed liner.
  15. Ministry of Environment (2004), Development of technology to transform Ca-bentonite and multi-functional media used at landfill liner and its structure.
  16. Ministry of Environment (2018), Wastes control act, Enforcement decree of the wastes control act, Table. 24.
  17. Mohanmmed Y. Fattah and Aysar H. S. Al-Lami. (2016), Behavior and characteristics of compacted expansive unsaturatedbentonite-sand mixture, Journal of Rock Mechanics and Geotechnical Engineering 8, pp.629-639. https://doi.org/10.1016/j.jrmge.2016.02.005
  18. Park C. S. and Kim J. W. (2017), Correlation Between Physical and Compaction Characteristics of Various Soils, Journal of the Korean Geo-Environmental Society, Vol.18, No.1, pp.23-29. https://doi.org/10.14481/jkges.2017.18.1.23
  19. Park S. S. (2013), A study on the evaluation of water permeability for calcium bentonite-sand mixtures and gravels, Journal of the Construction and Environment Research Institute, Vol.8, No.1, pp.1-8.
  20. Sapargaliyev, Y., Kravchenko1 M., Sapargaliyeva L., Dolgopolova A., Azеlkhanov A. and Suyekpayev E. (2015), Applications Of Montmorillonite from the Tagan Deposit, Kazakhstan, Global Advanced Research Journal of Engineering, Technology and Innovation, Vol.4, No.3, pp.41-50.
  21. Sarvaiya, J., Agrawal K. Y. and Bakre L. (2017), Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review, Journal of Drug Delivery Science and Technology, Vol.39. pp. 200-209. https://doi.org/10.1016/j.jddst.2017.03.023
  22. Usem. (2019), DIK-4012, http://www.usem.kr/bbs/board.php? bo_table=d4&wr_id=6.
  23. Yildiz N, Calimli A and Sarikaya Y. (1999), Characterization of $Na_2CO_3$ Activated Kutahya Bentonite, Turkish Journal of Chemistry, Vol.23, No.3, pp.309-317.

Cited by

  1. 순환토사의 벤토나이트-폴리머 혼합비에 따른 매립지 차수재 적용성에 관한 연구 vol.18, pp.4, 2019, https://doi.org/10.12814/jkgss.2019.18.4.063