• Title/Summary/Keyword: 혼합면

Search Result 916, Processing Time 0.03 seconds

Quality improving effect of dries noodle according to treatment of pine needle seasoning oil (솔잎향미유 처리에 의한 건면의 품질개선 효과)

  • 손무호
    • Culinary science and hospitality research
    • /
    • v.7 no.2
    • /
    • pp.181-194
    • /
    • 2001
  • Dried noodles was manufactured by wheat flour and saline solution mixture. At this time, saline solution mixture was used for simple saline solution and mixture(blending ratio of PNSO and emulsifier=2:1, w/w) of both pine needle seasoning oil (PNSO) manufactured by autoclaving method and food emulsifier. Water absorption ratio, volume expansion ratio and water soluble solid matters content were decreased, but cooking time was prolonged, respectively. According to, suitable treating amount of PNSO was 2-3%(w/w) level. On organoleptic test, the peculiar green color was appeared in cooked noodles of PNSO treating groups. The surface was slickly, chewy rheology and texture were improved at PNSO treating cooked noodle. During 20-30 minutes after cooking, chewy characteristics was maintained the treating groups more than PNSO 2%(w/w). At the result, this PNSO treatin dried noodle samples were suitable at the institutional food service as well as dining hal1 for the case of large scale's kitchen work.

  • PDF

Vegetation Mapping of Hawaiian Coastal Lowland Using Remotely Sensed Data (원격탐사 자료를 이용한 하와이 해안지역 식생 분류)

  • Park, Sun-Yurp
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.4
    • /
    • pp.496-507
    • /
    • 2006
  • A hybrid approach integrating both high-resolution and hyperspectral data sets was used to map vegetation cover of a coastal lowland area in the Hawaii Volcanoes National Park. Three common grass species (broomsedge, natal redtop, and pili) and other non-grass species, primarily shrubs, were focused in the study. A 3-step, hybrid approach, combining an unsupervised and a supervised classification schemes, was applied to the vegetation mapping. First, the IKONOS 1-m high-resolution data were classified to create a binary image (vegetated vs. non--vegetated) and converted to 20-meter resolution percent cover vegetation data to match AVIRIS data pixels. Second, the minimum noise fraction (MNF) transformation was used to extract a coherent dimensionality from the original AVIRIS data. Since the grasses and shubs were sparsely distributed and most image pixels were intermingled with lava surfaces, the reflectance component of lava was filtered out with a binary fractional cover analysis assuming that tile total reflectance of a pixel was a linear combination of the reflectance spectra of vegetation and the lava surface. Finally, a supervised approach was used to classify the plant species based on tile maximum likelihood algorithm.

  • PDF

Study on Effect of Exercise Performance using Non-face-to-face Fitness MR Platform Development (비대면 휘트니스 MR 플랫폼 개발을 활용한 운동 수행 효과에 관한 연구)

  • Kim, Jun-woo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.571-576
    • /
    • 2021
  • This study was carried out to overcome the problems of the existing fitness business and to build a fitness system that can meet the increased demand in the Corona situation. As a platform technology for non-face-to-face fitness edutainment service, it is a next-generation fitness exercise device that can use various body parts and synchronize network-type information. By synchronizing the exercise information of the fitness equipment, it was composed of learning contents through MR-based avatars. A quantified result was derived from examining the applicability of the customized evaluation system through momentum analysis with A.I analysis applying the LSTM-based algorithm according to the cumulative exercise effect of the user. It is a motion capture and 3D visualization fitness program for the application of systematic exercise techniques through academic experts, and it is judged that it will contribute to the improvement of the user's fitness knowledge and exercise ability.

A Study on the Facility for Domestic Waste Problems of high Temperatured Combustion and the Alteration of heating surface (폐기물소각로의 고온 연소에 따른 문제와 연소실 전열면 변경에 대한 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.60-67
    • /
    • 2010
  • Korea's large-scale incinerating facilities of domestic waste were built in the late 1980's. It was found that most of the incinerators were designed during the period and even the ones constructed afterwards have been built without any changes or modifications. However, the nature of waste fed into incinerators is undergoing a radical change due to government policies on waste collection, which is upheld by a research into changes in the heating value of domestic wastes. As a result, refractories and stokers are being damaged in many of the facilities due to overheating. On the other hand, the formation of clinkers on boilers' heating surface, which curbs he at transfer, results in problems such as a fall in used heating value and a rise in the temperature of combustion chambers. Methods are being deployed to resolve the problems-such as spraying water on piles of waste, incinerating food waste by mixing together what has been separately collected, spraying water on combustion chambers, etc. Such actions are not a fundamental solution, nor redesigning and rebuilding incineration facilities is cost-effective. This research seeks to develop a fundamental solution to address the situation.

LSTM Based Prediction of Ocean Mixed Layer Temperature Using Meteorological Data (기상 데이터를 활용한 LSTM 기반의 해양 혼합층 수온 예측)

  • Ko, Kwan-Seob;Kim, Young-Won;Byeon, Seong-Hyeon;Lee, Soo-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.603-614
    • /
    • 2021
  • Recently, the surface temperature in the seas around Korea has been continuously rising. This temperature rise causes changes in fishery resources and affects leisure activities such as fishing. In particular, high temperatures lead to the occurrence of red tides, causing severe damage to ocean industries such as aquaculture. Meanwhile, changes in sea temperature are closely related to military operation to detect submarines. This is because the degree of diffraction, refraction, or reflection of sound waves used to detect submarines varies depending on the ocean mixed layer. Currently, research on the prediction of changes in sea water temperature is being actively conducted. However, existing research is focused on predicting only the surface temperature of the ocean, so it is difficult to identify fishery resources according to depth and apply them to military operations such as submarine detection. Therefore, in this study, we predicted the temperature of the ocean mixed layer at a depth of 38m by using temperature data for each water depth in the upper mixed layer and meteorological data such as temperature, atmospheric pressure, and sunlight that are related to the surface temperature. The data used are meteorological data and sea temperature data by water depth observed from 2016 to 2020 at the IEODO Ocean Research Station. In order to increase the accuracy and efficiency of prediction, LSTM (Long Short-Term Memory), which is known to be suitable for time series data among deep learning techniques, was used. As a result of the experiment, in the daily prediction, the RMSE (Root Mean Square Error) of the model using temperature, atmospheric pressure, and sunlight data together was 0.473. On the other hand, the RMSE of the model using only the surface temperature was 0.631. These results confirm that the model using meteorological data together shows better performance in predicting the temperature of the upper ocean mixed layer.

Evaluation of Erosion Resistance Capability with Adhesive Soil Seeding Media (접착성 식생기반재의 침식저항능력 평가)

  • Seong, Si-Yung;Shin, Eun-Cheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.71-79
    • /
    • 2015
  • This paper describes vegetation based soil-media hydroseeding measures that have been previously applied as slope revegetation methods show problems such as insufficient binding force, drying, and insufficient organic matter. In particular, in the case of slope faces in regions where scattering is severe, a vicious circle exists in which remarkably low vegetation cover rates and increases in withering rates over time lead to further decreases in vegetation cover rates, which lead to further increases in erosion and scattering. Therefore, in the present study, environment friendly soil stabilizers were applied for resistance against erosion or scattering and engineering evaluations such as long-term immersion tests and flow resistance tests were conducted to determine appropriate mixing ratios. According to the results of long-term immersion tests utilizing environment friendly soil stabilizers and existing greening soil based materials, 100% collapse occurred at 30 hours and 40 days in the case of soil stabilizer mixing ratios of 0% and 2%, respectively. While the original form of the samples remained intact until the experiment was completed in the case of mixing ratios exceeding 4% indicating that 2% or higher soil stabilizer mixing ratios could affect the maintenance of forms even under extreme conditions. In addition, artificial rainfall tests were conducted on 40, 45, and 55 degree slope faces to evaluate the structural stability of vegetation based materials. Flow resistance tests were conducted on soil stabilizer mixing ratios of 0, 4, 8% to evaluate erosion resistance capability. Based on the results of the tests, environment friendly soil stabilizers applied for prevention of scattering or resistance against erosion by rainwater are considered to provide large effects to reduce losses and loss rates showed a tendency of decreasing rapidly when soil stabilizers were mixed.

Field Evidence of Magma Mixing from Concentric Zoning and Mafic Microgranular Enclaves in Bunam Stock, Korea (청송 부남암주의 동심원상 누대와 포유체로부터 마그마 혼합작용의 야외증거)

  • Hwang, Sang Koo;Seo, Seung Hwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.349-360
    • /
    • 2016
  • The Bunam Stock ($29.5km^2$ area) is an outcrop of plutonic complex classified four facies: coarse-grained granite, quartz monzodiorite, granodiorite and fine-grained granite. Three facies except the last one exhibit very irregular boundaries with gradational compositional variations between both facies and show concentric zoning from the central quartz monzodiorite through granodiorite to outer coarse-grained granite. Mafic microgranular enclaves (MME) commonly occur in granodiorite. Some MMEs, have very fine-grained chilled margins and indentedly crenulate contacts, and display horizontally circular and vertically elongate shapes. Their shape and granularity indicate coeval flow and mingling of partly crystalline felsic and mafic magmas. MMEs exhibit dark fine-grained margins giving them a ellipsoidal form that has been attributed to undercooling of a mafic magma as blobs intruded into a felsic magma. The observed relations in the Bunam Stock identify that two endmembers are coarse-grained granite from a felsic magma and quartz monzodiorite from a mafic magma, and hybrid is granodiorite including MMEs. So they exhibit concentric zoning that lays the center on the mafic endmember due to magma mixing at the contacts of two magmas, when mafic magma injected into felsic magma. Thus the quartz monzodiorite may probably represent an ancient conduit of mafic magma transport through a granitic magma chamber. Mafic magma would rise through the conduit in which favorable conditions for magma mixing occurred. All these features suggest that they formed from mixing processes of calc-alkaline magma in the Bunam Stock.

Noodle Characteristics of Jerusalem Artichoke Added Wheat Flour and Improving Effect of Texture Modifying Agents (돼지감자가루 복합분 국수의 제조와 품질개량제의 첨가효과)

  • Shin, Ji-Young;Byun, Myung-Woo;Noh, Bong-Soo;Choi, Eon-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.538-545
    • /
    • 1991
  • In order to develop low calorie noodles, flours of Jerusalem artichoke and strong wheat were mixed with ratios of 25 : 75, 30 : 70 and 35 : 65. The substitution of wheat flour with Jerusalem artichoke powder up to 25% showed good formation of noodle stripes similar to that of wheat flour alone. The formation was effectively improved by addition of $0.5{\sim}1.0%$ solution alginate, 1.0% Fremol or mixure of 0.5% ${\alpha}-Polygel$, 0.5% Alcalin and 1.5% fremol for $25{\sim}30%$ substitution with Jerusalem articoke powder. Also addition of sodium alginate to the 30% substitution with Jerusalem artichoke powder showed the high Hunter value of Lightness and good cooking quality of noodle, relatively close to those of noodle of wheat flour alone. The dough prepared with mixed flours showed increase in cohesiveness and resilience and decrease in hardness and adhesiveness, compared to those of wheat flour. The addition of sodium alginate was very effective for increase in adhesiveness and cohesiveness. The cohesiveness of cooked noodles was increased with substitution with Jerusalem artichoke powder while sodium alginate influenced little. There is no significant difference of taste, odor, color and texture of cooked noodles between wheat flour alone and composite flours with $25{\sim}30%$ of Jerusalem artichoke and texture modifying agents. The results suggested that good quality noodles could be produced using Jerusalem artichoke powder.

  • PDF

Numerical Modeling for Turbulent Combustion Processes of Vortex Hybrid Rocket (Vortex Hybrid 로켓 난류연소과정의 모델링 해석)

  • 조웅호;김후중;김용모;윤명원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.244-245
    • /
    • 2003
  • 고체나 액체 추진로켓에 비하여 하이브리드 추진 시스템은 작동조건의 안정성과 안전함등의 많은 장점을 가지고 있다. HTPB와 같은 고체연료는 제작 및 저장, 운송 그리고 장착상의 안정성을 가지고 있으며 하이브리드 로켓의 고체연료로의 산화제의 유입을 제어하면서 추력의 변화와 엔진내부의 연소중단과 재 점화를 용이하게 할 수 있다. 이러한 이유로 인하여 하이브리드 엔진은 좀 더 경제적인 장치로 기대를 모으고 있다. 그러나, 기존의 하이브리드 로켓 엔진은 고체 추진 로켓에 비하여 낮은 연료 regression 율과 연소효율을 가지는 단점이 있다. 이러한 단점을 해결하고 요구되어지는 추력값과 연료유량을 증가시키기 위하여 고체연료의 표면적을 증가시킬 필요가 있다. 기존의 하이브리드 엔진에서는 연료 그레인에 다수의 연소포트를 만들어 표면적을 증가시켰으나 이는 비 활용 공간의 증가와 추진제의 질량 및 체적분율의 상당한 감소를 초래한다. 지난 수십년간에 걸쳐 하이브리드 엔진에서 연료의 regression 특성 및 엔진 성능 향상을 위한 연구가 계속되어 왔으며 최근에 엔진의 체적 규제를 경감시키고 연료의 regression율을 향상시키기 위하여 선회유동을 이용하는 하이브리드 로켓 엔진들이 제안되고 있다. 이러한 선회유동을 가지는 하이브리드 로켓은 고체연료 그레인에 대하여 평행하게 유입되는 기존의 하이브리드 로켓에 비하여 고체연료 벽면에서의 대류열전달이 현저하게 증가하게 되어 아주 높은 고체연료의 regression율을 얻을 수 있는 이점이 있다. 선회유동 하이브리드 로켓의 연소과정은 고체 연료의 열분해과정, 대류 열전달, 난류 혼합, 난류와 화학반응의 상호작용, soot의 생성 및 산화과정, soot 입자 및 연소가스에 의한 복사 열전달, 연소장과 음향장의 상호작용 등의 복잡한 물리적 과정을 포함하고 있다. 이러한 물리적 과정 중 난류연소, 고체연료 벽면 근방에서의 대류 열전달 및 연소과정에서 생성되는 soot 입자로부터의 복사 열전달, 그리고 고체연료 열 분해시 표면반응들은 고체연료의 regression율에 큰 영향을 미친다. 특히 고체연료의 난류화염면의 위치와 폭, 그리고 비 예혼합 난류화염장에서 생성되는 soot의 체적분율의 예측은 난류연소모델, 열전달 모델, 그리고 regression율 모델에 의해 크게 영향을 받기 때문에 수치모델의 예측 능력 향상시키기 위하여 이러한 물리적 과정을 정확히 모델링해야 할 필요가 있다. 특히 vortex hybrid rocket내의 난류연소과정은 아래와 같은 Laminar Flamelet Model에 의해 모델링 하였다. 상세 화학반응 과정을 고려한 혼합분율 공간에서의 화염편의 화학종 및 에너지 보존 방정식은 다음과 같다. 화염편 방정식과 혼합분률과 scalar dissipation rate의 관계식을 이용하여 혼합분률과 scalar dissipation rate에 따른 모든 reactive scalar들을 구하게 된다. 이러한 화염편 방정식들을 mixture fraction space에서 이산화시켜서 얻은 비선형 대수방정식은 TWOPNT(Grcar, 1992)로 계산돼 flamelet Library에 저장되게 된다. 저장된 laminar flamelet library를 이용하여 난류화염장의 열역학 상태량 평균치는 presumed PDF approach에 의해 구해진다. 본 연구에서는 강한 선회유동을 가지는 Hybrid Rocket 연소장내의 난류와 화학반응의 상호작용을 분석하기 위하여 Laminar Flamelet Model, 화학평형모델, 그리고 Eddy Dissipation Model을 이용한 수치해석결과를 체계적으로 비교하였다. 또한 Laminar Flamelet Model과 state-of-art 물리모델들을 이용하여 선회 유동을 갖는 하이브리드 로켓 엔진의 연소 및 Soot 생성 및 산화과정을 살펴보았으며 복사 열전달이 고체 연료 표면의 regression율에 미치는 영향도 살펴보았다. 특히 swirl강도, 산화제의 유입위치 그리고 선회유동의 형성방식이 하이브리드 로켓의 연소특성 및 regression rate에 미치는 영향을 상세히 해석하였다.

  • PDF

Improved Compressive·Flexural Performance of Hybrid Fiber-Reinforced Mortar Using Steel and Carbon Fibers (강 및 탄소 섬유를 사용한 하이브리드 섬유보강 모르타르의 압축·휨성능 향상)

  • Heo, Gwang-Hee;Park, Jong-Gun;Seo, Dong-Ju;Koh, Sung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.48-59
    • /
    • 2021
  • In this study, experiments were conducted to investigate the compressive·flexural performances of single fiber-reinforced mortar (FRM) using only steel fiber or carbon fiber which has different material properties as well as hybrid FRM using a mixture of steel and carbon fibers. The mortar specimens incorporated steel and carbon fibers in the mix proportions of 1+0%, 0.75+0.25%, 0.5+0.5%, 0.25+0.75% and 0+1% by volume at a total volume fraction of 1.0%. Their mechanical performance was compared and examined with a plain mortar without fiber at 28 days of age. The experiments of mortar showed that the hybrid FRM using a mixture of 0.75% steel fibers + 0.25% carbon fibers had the highest compressive and flexural strength, confirming by thus the synergistic reinforcing effect of the hybrid FRM. On the contrast, in the case of hybrid FRM using a mixture of 0.5% steel fibers + 0.5% carbon fibers witnessed the highest flexural toughness, suggesting as a result the optimal fiber mixing ratio of hybrid FRM to improve the strength and flexural toughness at the same time. Moreover, the fracture surface was observed through a scanning electron microscope (SEM) for image analysis of the FRM specimen. These results were of great help for images analysis of hybrid reinforcing fibers in cement matrix.