DOI QR코드

DOI QR Code

Improved Compressive·Flexural Performance of Hybrid Fiber-Reinforced Mortar Using Steel and Carbon Fibers

강 및 탄소 섬유를 사용한 하이브리드 섬유보강 모르타르의 압축·휨성능 향상

  • 허광희 (건양대학교 해외건설플랜트학과) ;
  • 박종건 (건양대학교 공공안전연구소) ;
  • 서동주 (건양대학교 재난안전공학과 대학원) ;
  • 고성곤 (전주비전대학교 지적토목학과)
  • Received : 2021.06.28
  • Accepted : 2021.09.24
  • Published : 2021.10.30

Abstract

In this study, experiments were conducted to investigate the compressive·flexural performances of single fiber-reinforced mortar (FRM) using only steel fiber or carbon fiber which has different material properties as well as hybrid FRM using a mixture of steel and carbon fibers. The mortar specimens incorporated steel and carbon fibers in the mix proportions of 1+0%, 0.75+0.25%, 0.5+0.5%, 0.25+0.75% and 0+1% by volume at a total volume fraction of 1.0%. Their mechanical performance was compared and examined with a plain mortar without fiber at 28 days of age. The experiments of mortar showed that the hybrid FRM using a mixture of 0.75% steel fibers + 0.25% carbon fibers had the highest compressive and flexural strength, confirming by thus the synergistic reinforcing effect of the hybrid FRM. On the contrast, in the case of hybrid FRM using a mixture of 0.5% steel fibers + 0.5% carbon fibers witnessed the highest flexural toughness, suggesting as a result the optimal fiber mixing ratio of hybrid FRM to improve the strength and flexural toughness at the same time. Moreover, the fracture surface was observed through a scanning electron microscope (SEM) for image analysis of the FRM specimen. These results were of great help for images analysis of hybrid reinforcing fibers in cement matrix.

본 연구에서는 다른 재료특성을 갖는 강섬유 또는 탄소섬유만을 사용한 단일 섬유보강 모르타르(fiber-reinforced mortar, FRM)와 강 및 탄소 섬유를 혼합사용한 하이브리드 FRM의 압축·휨성능을 조사하기 위해 실험을 수행하였다. 모르타르 시편은 총 섬유혼입률 1.0%에서 부피에 의한 1+0%, 0.75+0.25%, 0.5+0.5%, 0.25+0.75% 및 0+1%의 혼합비율로 강섬유와 탄소섬유를 혼입하였다. 이들의 역학적 성능을 재령 28일에서 섬유가 없는 플레인 모르타르와 비교, 검토하였다. 모르타르의 실험결과는 강섬유 0.75% + 탄소섬유 0.25%를 혼합사용한 하이브리드 FRM가 가장 높은 압축강도와 휨강도를 나타내, 하이브리드 FRM의 시너지 보강효과를 확인할 수 있었다. 반면, 강섬유 0.5% + 탄소섬유 0.5%를 혼합사용한 하이브리드 FRM의 경우 가장 높은 휨인성을 얻었으며, 본 실험결과를 토대로 강도와 휨인성을 동시에 개선하기 위한 하이브리드 FRM의 최적의 섬유 혼합비율을 제시하였다. 게다가, FRM 시편의 이미지 분석을 위해 주사전자현미경(scanning electron microscope, SEM)을 통해 파단면을 관찰하였다. 이들 결과는 시멘트 매트릭스 내에서 하이브리드 보강섬유의 이미지 분석을 하는 데 큰 도움이 되었다.

Keywords

Acknowledgement

이 논문은 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(Grant No. NRF-018R1A6A1A03025542). 또한, 산업체공동 연구과제 지원사업으로 무왕건설의 연구비에 의해 지원되었습니다.

References

  1. ACI Committee 544 (1999), Measurement of Properties of Fiber Reinforced Concrete, American Concrete Institute (ACI).
  2. ASTM C 1018 (2006), Standard Test Method for Flexural Toughness and First Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading), American Society for Testing and Materials (ASTM).
  3. ASTM C 1609 (2012), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading), American Society for Testing and Materials (ASTM).
  4. Banthia, N., and Soleimani, SM. (2005), Flexural Response of Hybrid Fiber-Reinforced Cementitious Composites, ACI Materials Journal, 102(6), 382-389.
  5. Belie, N.D., Soutsos, M., and Gruyaert, E. (2018), Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials, Springer, Berlin, Germany.
  6. Betterman, LR., Ouyang C., and Shap SP. (1995), Fiber-Matrix Interaction in Microfiber-Reinforced Mortar, Advanced Cement Based Materials, 1995(2), 53-61. https://doi.org/10.1016/1065-7355(95)90025-X
  7. Brandt, A.M. (2008), Fibre Reinforced Cement-Based(FRC) Composites after over 40 Years of Development in Building and Civil Engineering, Composites Structures, 86, 3-9. https://doi.org/10.1016/j.compstruct.2008.03.006
  8. Choi, J.I., Koh, K.T., and Lee, B.Y. (2015), Tensile Behavior of Ultra-High Performance According to Combination of Fibers, Journal of the Korea Institute for Structural of Maintenance and Inspection, 19(4), 49-56. https://doi.org/10.11112/JKSMI.2015.19.4.049
  9. Dehghani, A., and Aslani, F. (2020), The Effect of Shape Memory Alloy, Steel, and Carbon Fibres on Fresh, Mechanical, and Electrical Properties of Cementitious Composites, Cement and Concrete Composites, 112(2020), 1-16.
  10. Fantilli, A.P., Kwon, S., Mihashi, H., and Nishiwaki, T. (2018), Synergy Assessment in Hybrid Ultra-High Performance Fiber-Reinforced Concrete (UHP-FRC), Cement and Concrete Composites, 86(2018), 19-29. https://doi.org/10.1016/j.cemconcomp.2017.10.012
  11. Heo, G.H., Song, K.C., Park, J.G., Han, Y.J., and Lim, C.Y. (2019), Mechanical Properties and Impact Resistance Review of Carbon Fiber Reinforced Cement Composites with Different Fiber Contents and Fiber Lengths, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(4), 86-95.
  12. JSCE-SF4 (1984), Method of Tests for Flexural Strength and Flexural Toughness of Steel Fiber Reinforced Concrete, Japan Society of Civil Engineers (JSCE), 58-61.
  13. Karen, L., Scrivener., Alison K., Crumbie., and Peter, L. (2004), The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete, Interface Science 12, 411-421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c
  14. Korea Agency for Technology and Standards (KATS) (2016), Methods of Testing Cements-Determination of Strength (KS L ISO 679), Seoul, Korea: Korea Standard Association (KSA), 1-16.
  15. Korea Agency for Technology and Standards (KATS) (2014), Standard Test Method for Flexural Performance of Fiber Reinforced Concrete (KS F 2566), Seoul, Korea: Korea Standard Association (KSA), 1-10.
  16. Kwon, S.O., Bae, S.H., Kim, J.O., Lee, H.J., and Kim, S.W. (2017), Direct Tensile Strength and Flexural Performance of Lathe Scrap Reinforced Cementitious Composites. Journal of the Korea Concrete Institute, 29(6), 555-562. https://doi.org/10.4334/JKCI.2017.29.6.555
  17. Naaman, A. E. (2002), Toughness, Ductility, Surface Energy and Deflection-hardening FRC Composites, In JCI International Workshop on Ductile Fiber-reinforced Cementitious Composite (DFRCC)-Application and Evaluation (DFRCC-2002), Takayama 21-22 October 2002. Tokyo, Japan. 33-57.
  18. Pakravan, H.R., Latifi, M., and Jamshidi, M. (2017), Hybrid Short Fiber Reinforcement System in Concrete: A Review, Construction and Building Materials, 142(2017), 280-294. https://doi.org/10.1016/j.conbuildmat.2017.03.059
  19. Son, M.J., Kim, G.Y., Lee, S.K., Kim, H.S., and Nam, Y.S. (2017), Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain and Strain Rate, Journal of the Korea Institute for Structural of Maintenance and Inspection, 21(6), 98-105.Received : 00/00/2021 https://doi.org/10.11112/JKSMI.2017.21.6.098