• Title/Summary/Keyword: 형태파라미터

Search Result 574, Processing Time 0.032 seconds

Multi-finger MOSFET characteristics with channel width variation (게이트 폭의 변화에 따른 Multi-finger MOSFET의 특성 모델링)

  • Yim, Hyuck-Sang;Kang, Jung-Han;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.176-177
    • /
    • 2008
  • 이 논문에서는 $0.35{\mu}m$ 공정으로 제작된 MOSFET의 고주파 동작 특성을 분석하였다. Multi-finger 형태인 게이트 폭의 길이 변화에 따른 특성 변화를 BSIM3v3 모델과 외부 기생 파라미터를 포함한 lumped element를 이용해 모델링을 하였다. 또한 Multi-finger 게이트 구조에서 게이트 finger 수의 증가에 따라 생기는 특성 변화를 각각의 구조에 따라 추출된 주요 기생 파라미터의 변화를 통해 분석하였다.

  • PDF

Optimal ATM Traffic Shaping Method Using the Backpropagation Neural Network (신경회로망을 이용한 최적의 ATM 트래픽 형태 제어 방법)

  • 한성일;이배호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.215-218
    • /
    • 1996
  • ATM망은 실제로 이용 가능한 대역폭 이상을 할당하는 통계적 다중화(statistical multiplexing) 기법을 사용하므로 망을 통한 트래픽 흐름을 적절히 관리하지 못하면 혼잡(congestion), 셀 손실, 망의 성능 저하 등을 야기하게 된다. 이러한 상황을 예방하고 셀의 도착 시간 버스트(burstiness)를 줄이며 셀 손실 특성을 개선하여 망의 성능을 증가시키기 위하여, 트래픽의 형태 제어 방법을 제안한다. 트래픽 형태 제어 파라미터 값의 역전파 신경망을 적용하여 예측되며, 이 예측된 값들에 의해 형태 제어 방법을 수행한다. 제안된 형태 제어 기법의 성능은 Poisson 트래픽 입력에 대한 컴퓨터 시뮬레이션에 의해 얻어지며, 멀티플렉서에서의 최대 버퍼 크기를 측정하여 성능을 평가하였다.

  • PDF

Sequential Bayesian Updating Module of Input Parameter Distributions for More Reliable Probabilistic Safety Assessment of HLW Radioactive Repository (고준위 방사성 폐기물 처분장 확률론적 안전성평가 신뢰도 제고를 위한 입력 파라미터 연속 베이지안 업데이팅 모듈 개발)

  • Lee, Youn-Myoung;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.179-194
    • /
    • 2020
  • A Bayesian approach was introduced to improve the belief of prior distributions of input parameters for the probabilistic safety assessment of radioactive waste repository. A GoldSim-based module was developed using the Markov chain Monte Carlo algorithm and implemented through GSTSPA (GoldSim Total System Performance Assessment), a GoldSim template for generic/site-specific safety assessment of the radioactive repository system. In this study, sequential Bayesian updating of prior distributions was comprehensively explained and used as a basis to conduct a reliable safety assessment of the repository. The prior distribution to three sequential posterior distributions for several selected parameters associated with nuclide transport in the fractured rock medium was updated with assumed likelihood functions. The process was demonstrated through a probabilistic safety assessment of the conceptual repository for illustrative purposes. Through this study, it was shown that insufficient observed data could enhance the belief of prior distributions for input parameter values commonly available, which are usually uncertain. This is particularly applicable for nuclide behavior in and around the repository system, which typically exhibited a long time span and wide modeling domain.

A Study on the SNR Estimation Performance of Hierarchical 16QAM (계층 16QAM의 SNR 추정 성능에 대한 연구)

  • Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.975-981
    • /
    • 2012
  • The SNR estimation performance of hierarchical 16QAM system, which is adopted to simultaneous transmission or efficient image transmission system, is analyzed. Hierarchical 16QAM is modulation system which has different constellation shape from conventional QAM and can provide users with high quality and low quality of data services simultaneously by controlling hierarchical modulation parameter. Assuming AWGN channel, SNR estimation performance characteristics are investigated considering hierarchical modulation parameter and type of constellation points. From simulation results, it is found that constellation point showing superior SNR estimation performance relative to other points is exist. Also, it is known that according to hierarchical modulation parameter, SNR estimation range with more accurate estimation performance is divided.

Transfer Function Optimization Using Crowd Sourcing (크라우드 소싱을 이용한 변환함수 최적화)

  • Nam, Jinhyun;Nam, Doohee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.107-112
    • /
    • 2014
  • This Study is Transfer function optimization plan of volume rendering of multi user environment. Each volume data, for appropriate transfer function, they should be adjusted parameter many times. To prevent this, we propose transfer function optimization plan using crowd sourcing. In multi user environment, we use weight value for reliability level for each user. Because transfer function parameter used previous users is provided next users, they can be used effectively optimized transfer function and can reduce attempts.

Adaptive Tracking Control for Spacecraft Rendezvous and Docking (우주비행체의 랑데부 및 도킹을 위한 적응 제어기법)

  • Yoon, Hyung-Joo;Shin, Hyo-Sang;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1072-1078
    • /
    • 2008
  • An adaptive control algorithm for spacecraft rendezvous and docking in a Keplerian orbit is presented. The equations of relative motion of two spacecrafts expressed in a local-vertical-local-horizontal rectangular frame are converted to a general Hamiltonian form, then an adaptive control method developed for the uncertain Hamiltonian system is applied to the rendezvous and docking problem. A smooth projection algorithm is applied to keep the parameter estimates inside a singularity-free region, and a numerical example shows that the developed controller successfully deals with the unknown mass of the chaser spacecraft.

Design of a direct multivariable neuro-generalised minimum variance self-tuning controller (직접 다변수 뉴로 일반화 최소분산 자기동조 제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.21-28
    • /
    • 2004
  • This paper presents a direct multivariable self-tuning controller using neural network which adapts to the changing parameters of the higher order multivariable nonlinear system with nonminimum phase behavior, mutual interactions and time delays. The nonlinearities are assumed to be globally bounded, and a multivariable nonlinear system is divided linear part and nonlinear part. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm the computer simulation is done to adapt the multivariable nonlinear nonminimm phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct multivariable adaptive controller using neural network.

Optimization of fuzzy systems based on information granules (정보 Granules 기반 퍼지 시스템의 최적화)

  • Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2567-2569
    • /
    • 2003
  • 본 논문은 비선형 시스템의 퍼지모델을 위해 정보 Granules 기반 퍼지추론 시스템 모델의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 제안된 규칙베이스 퍼지모델은 HCM 클러스터링 방법, 컴플렉스 알고리즘 및 퍼지추론 방법을 이용하여 시스템 구조와 파라미터 동정을 수행한다. 두 가지 형태의 퍼지모델 추론 방법은 간략추론, 선형추론에 의해 시행된다. 본 논문에서는 퍼지모델의 입력변수와 퍼지 입력 공간 분할 및 입출력 데이타의 중심값을 구해서 후반부 다항식함수에 의한 정보 Granules 기반 구조 동정과 파라미터 동정을 통해 비선형 시스템을 표현한다. 전반부 파라미터의 동정에는 HCM 클러스터링 방법과 컴플렉스 알고리즘을 사용하고, 후반부는 표준 HCM 클러스터링과 표준 최소자승법을 사용하여 동정한다. 그리고 학습 및 테스트 데이타의 성능견과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 제시함으로써 근사화와 예측성능의 향상을 꾀한다. 제안된 비선형 모델의 성능평가를 통해 그 우수성을 보인다.

  • PDF

ICLAL: In-Context Learning-Based Audio-Language Multi-Modal Deep Learning Models (ICLAL: 인 컨텍스트 러닝 기반 오디오-언어 멀티 모달 딥러닝 모델)

  • Jun Yeong Park;Jinyoung Yeo;Go-Eun Lee;Chang Hwan Choi;Sang-Il Choi
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.514-517
    • /
    • 2023
  • 본 연구는 인 컨택스트 러닝 (In-Context Learning)을 오디오-언어 작업에 적용하기 위한 멀티모달 (Multi-Modal) 딥러닝 모델을 다룬다. 해당 모델을 통해 학습 단계에서 오디오와 텍스트의 소통 가능한 형태의 표현 (Representation)을 학습하고 여러가지 오디오-텍스트 작업을 수행할 수 있는 멀티모달 딥러닝 모델을 개발하는 것이 본 연구의 목적이다. 모델은 오디오 인코더와 언어 인코더가 연결된 구조를 가지고 있으며, 언어 모델은 6.7B, 30B 의 파라미터 수를 가진 자동회귀 (Autoregressive) 대형 언어 모델 (Large Language Model)을 사용한다 오디오 인코더는 자기지도학습 (Self-Supervised Learning)을 기반으로 사전학습 된 오디오 특징 추출 모델이다. 언어모델이 상대적으로 대용량이기 언어모델의 파라미터를 고정하고 오디오 인코더의 파라미터만 업데이트하는 프로즌 (Frozen) 방법으로 학습한다. 학습을 위한 과제는 음성인식 (Automatic Speech Recognition)과 요약 (Abstractive Summarization) 이다. 학습을 마친 후 질의응답 (Question Answering) 작업으로 테스트를 진행했다. 그 결과, 정답 문장을 생성하기 위해서는 추가적인 학습이 필요한 것으로 보였으나, 음성인식으로 사전학습 한 모델의 경우 정답과 유사한 키워드를 사용하는 문법적으로 올바른 문장을 생성함을 확인했다.

Analysis on Forward/Backward Current Distribution and Off-current for Doping Concentration of Double Gate MOSFET (DGMOSFET의 도핑분포에 따른 상 · 하단 전류분포 및 차단전류 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2403-2408
    • /
    • 2013
  • This paper has analyzed the change of forward and backward current for channel doping concentration to analyze off-current of double gate(DG) MOSFET. The Gaussian function as channel doping distribution has been used to compare with experimental ones, and the two dimensional analytical potential distribution model derived from Poisson's equation has been used to analyze the off-current. The off-current has been analyzed for the change of projected range and standard projected range of Gaussian function with device parameters such as channel length, channel thickness, gate oxide thickness and channel doping concentration. As a result, this research shows the off-current has greatly influenced on forward and backward current for device parameters, especially for the shape of Gaussian function for channel doping concentration.