• Title/Summary/Keyword: 형태소 합성

Search Result 40, Processing Time 0.023 seconds

A Korean Generator using Left-Right Connectivity Information (DaMaN: 좌우접속정보를 이용한 한국어 생성기)

  • Chang, Won;Yuh, Sang-Hwa;Jung, Han-Min;Kim, Tae-Wan;Hwang, Do-Sam;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.121-130
    • /
    • 1995
  • 기계번역은 대상 언어를 해석하고 변환하여 목적언어의 대역어를 선정한 후, 목적언어를 생성하는 과정을 거친다. 이때, 대상언어의 분석 단위에 따라 대역어의 생성 단위 또는 깊이가 다르다. 그러므로, 특정한 시스템을 위한 생성기는 그 시스템의 해석 또는 변환단계에서 추출되는 대역어에 의존하게 되어 시스템 호환성을 상실한다. 따라서, 중복된 생성기의 개발을 피하기 위하여 번역시스템 특성에 국한되지 않고 독립적으로 이용될 수 있는 한국어 형태소생성기 개발이 필요하다. 본 논문에서는 한국어 해석에 사용되는 한국어 형태소 좌우인접정보를 이용하여 한국어형태소를 생성하는 시스템인 DaMaN을 소개한다. 세분류된 형태소의 활용과 접속, 조사의 변동, 띄어쓰기를 고려한 형태소 좌우접속 정보를 임의 조합 가능한 복합형태 (합성어)에도 적용할 수 있도록 확장하였다. 따라서, 대상언어의 분석단위에 제한 받지 않으므로 시스템 호환성이 있다.

  • PDF

Analysis of Derived Nouns and Compound Nouns by Examining Full Text (전문(全文) 분석을 통한 파생명사 및 합성명사의 분석)

  • Park, Bong-Rae;Hwang, Young-Sook;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.122-128
    • /
    • 1997
  • 대부분의 한국어 형태소 분석기는 파생명사나 합성명사가 포함된 어절을 오분석 또는 과분석하는 경향이 있다. 이는 하나의 어절에서 오분석이나 과분석을 방지하기 위하여 획득할 수 있는 정보가 제한적이기 때문이다. 이에 본 논문은 파생명사나 합성명사 후보가 포함된 어절뿐만 아니라 주변 및 전문에서 분석에 필요한 정보를 수집하여 이용하는 방법을 제시한다. 제안한 방법은 오분석된 파생명사나 합성명사에만 나타나는 저빈도 단어를 제거하고, 파생명사나 합성명사 후보의 주변 어휘들을 실마리로 이용하며, 문서 전역에서 동일한 파생명사나 합성명사 후보가 포함된 둘 이상의 어절을 비교분석하여 파생명사 및 합성명사 후보가 포함된 어절을 처리한다. 실험 결과 제안한 방법은 99.8%의 정확도와 95.3%의 재현율로 파생명사나 합성명사 후보가 포함된 어절을 올바르게 분석할 수 있었다.

  • PDF

Integrated Indexing Method using Compound Noun Segmentation and Noun Phrase Synthesis (복합명사 분할과 명사구 합성을 이용한 통합 색인 기법)

  • Won, Hyung-Suk;Park, Mi-Hwa;Lee, Geun-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.84-95
    • /
    • 2000
  • In this paper, we propose an integrated indexing method with compound noun segmentation and noun phrase synthesis. Statistical information is used in the compound noun segmentation and natural language processing techniques are carefully utilized in the noun phrase synthesis. Firstly, we choose index terms from simple words through morphological analysis and part-of-speech tagging results. Secondly, noun phrases are automatically synthesized from the syntactic analysis results. If syntactic analysis fails, only morphological analysis and tagging results are applied. Thirdly, we select compound nouns from the tagging results and then segment and re-synthesize them using statistical information. In this way, segmented and synthesized terms are used together as index terms to supplement the single terms. We demonstrate the effectiveness of the proposed integrated indexing method for Korean compound noun processing using KTSET2.0 and KRIST SET which are a standard test collection for Korean information retrieval.

  • PDF

Automatic Generation of Pronunciation Variants for Korean Continuous Speech Recognition (한국어 연속음성 인식을 위한 발음열 자동 생성)

  • 이경님;전재훈;정민화
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.35-43
    • /
    • 2001
  • Many speech recognition systems have used pronunciation lexicon with possible multiple phonetic transcriptions for each word. The pronunciation lexicon is of often manually created. This process requires a lot of time and efforts, and furthermore, it is very difficult to maintain consistency of lexicon. To handle these problems, we present a model based on morphophon-ological analysis for automatically generating Korean pronunciation variants. By analyzing phonological variations frequently found in spoken Korean, we have derived about 700 phonemic contexts that would trigger the multilevel application of the corresponding phonological process, which consists of phonemic and allophonic rules. In generating pronunciation variants, morphological analysis is preceded to handle variations of phonological words. According to the morphological category, a set of tables reflecting phonemic context is looked up to generate pronunciation variants. Our experiments show that the proposed model produces mostly correct pronunciation variants of phonological words. Then we estimated how useful the pronunciation lexicon and training phonetic transcription using this proposed systems.

  • PDF

A Study on the Natural Language Generation by Machine Translation (영한 기계번역의 자연어 생성 연구)

  • Hong Sung-Ryong
    • Journal of Digital Contents Society
    • /
    • v.6 no.1
    • /
    • pp.89-94
    • /
    • 2005
  • In machine translation the goal of natural language generation is to produce an target sentence transmitting the meaning of source sentence by using an parsing tree of source sentence and target expressions. It provides generator with linguistic structures, word mapping, part-of-speech, lexical information. The purpose of this study is to research the Korean Characteristics which could be used for the establishment of an algorism in speech recognition and composite sound. This is a part of realization for the plan of automatic machine translation. The stage of MT is divided into the level of morphemic, semantic analysis and syntactic construction.

  • PDF

Korean Sentiment Analysis using Multi-channel and Densely Connected Convolution Networks (Multi-channel과 Densely Connected Convolution Networks을 이용한 한국어 감성분석)

  • Yoon, Min-Young;Koo, Min-Jae;Lee, Byeong Rae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.447-450
    • /
    • 2019
  • 본 논문은 한국어 문장의 감성 분류를 위해 문장의 형태소, 음절, 자소를 입력으로 하는 합성곱층과 DenseNet 을 적용한 Text Multi-channel DenseNet 모델을 제안한다. 맞춤법 오류, 음소나 음절의 축약과 탈락, 은어나 비속어의 남용, 의태어 사용 등 문법적 규칙에 어긋나는 다양한 표현으로 인해 단어 기반 CNN 으로 추출 할 수 없는 특징들을 음절이나 자소에서 추출 할 수 있다. 한국어 감성분석에 형태소 기반 CNN 이 많이 쓰이고 있으나, 본 논문에서 제안한 Text Multi-channel DenseNet 모델은 형태소, 음절, 자소를 동시에 고려하고, DenseNet 에 정보를 밀집 전달하여 문장의 감성 분류의 정확도를 개선하였다. 네이버 영화 리뷰 데이터를 대상으로 실험한 결과 제안 모델은 85.96%의 정확도를 보여 Multi-channel CNN 에 비해 1.45% 더 정확하게 문장의 감성을 분류하였다.

Design of Automatic Indexing System Using Korean Morpheme Network (문법형태소 네트워크를 이용한 자동색인 시스템의 설계)

  • Ahn, Sung-Hyun;Chang, Jae-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.13-17
    • /
    • 1995
  • 본 논문은 한국어 특성을 적용하여 키워드를 자동으로 추출하는 기법을 제시한다. 기존에 제안된 명사 추출 시스템인 문법형태소 네트워크를 확장하여 단일 명사 뿐만 아니라 복합 명사를 색인어로 추출한다. 복합 명사는 단일 명사에 비해 보다 한정적 개념을 가지므로, 색인어로 추출될 때 문헌의 식별력을 높일 수 있다. 복합 명사를 구성하는 각각의 단일 명사를 인식함으로써 복합 명사를 분해하고, 간단한 구단위 구문분석을 수행하는 명사 결합 규칙에 따라 단일 명사들을 복합 명사로 합성하는 방법을 제시한다. 마지막으로 이와 같이 추출된 복합 명사에, 복합 명사를 구성하는 단일 명사간의 연관성을 고려하여 보다 정확한 가중치를 부여할 수 있는 새로운 가중치 부여 방안을 제시한다.

  • PDF

Text Preprocessor for Generating Korean Automatic Pronunciation Variants Using Morpheme-trg Information (한국어 발음열 자동 생성을 위한 형태소 태그 정보 기반의 텍스트 전처리기)

  • 이경님;정민화
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.199-201
    • /
    • 2001
  • 일반적으로 발음열 자동 생성기는 음성 인식 및 음성 합성에 사용되며, 그 주된 역할은 입력된 한글 철자에 대해 발음 나는 데로 표기된 음소열로 출력하는 것이다. 그러나 실제 입력되는 문장에는 특수 기호 및 알파벳. 아라비아 숫자, 영어 단어, 알파벳과 숫자가 혼용된 약어, 기호 단위 명사 등이 포함되어 있다. 게다가 아라비아 숫자의 경우 단위 명사의 종류에 따라서 뿐만 아니라, 문맥에 따라 숫자를 읽는 방식이 달라지게 된다. 이러한 모든 현상들을 발음열 생성기 내부에서 처리하게 되면 선행작업이 상대적으로 크게 되어 과부하 문제 가 발생된다. 또한 어절 내의 문맥 정보만으로 정확한 변환 결과를 얻기 힘들기 때문에 형태소 분석 수행 결과 및 예외처리를 위 한 루틴을 포함하여 한글 자소 단위의 입력형식으로 변환하는 전처리 시스템을 구성하였다.

  • PDF

The structure and features of the LGKMA (LGKMA의 구조 및 특성)

  • Kwak, Jong-Geun;Eun, Zong-Zin;Kang, Yun-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.137-144
    • /
    • 1999
  • LGKMA 시스템은 형태소 분석기와 품사 태거 및 명사 추출기로 구성되며, LG 종합기술원에서 연구 개발 중인 다국어 정보 검색, 음성 합성, 개인정보처리 에이전트 및 디지털 TV의 프로그램 안내문을 분석, 검색하는 EPG(Electronic Program Guide) 응용 둥 다양한 응용 프로그램에서 사용되고 있다. 본 논문에서는 형태소 분석기와 태거의 기반 기술보다는 LGKMA(LG Korean Morphological Analyser)의 전반적인 구조와 다른 시스템과 비교했을 때의 특성, 그리고 실제 응용되는 사례를 소개하고자 한다. 또 표준화를 위해서 열렸던 MATEC99에 참가하기 위해서 수행했던 작업들을 보고한다.

  • PDF

KoELMo: Deep Contextualized word representations for Korean (KoELMo: 한국어를 위한 문맥화된 단어 표상)

  • Hong, Seung-Yean;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.296-298
    • /
    • 2018
  • 기존의 Word2Vec이나 Glove 등의 단어 임베딩 모델은 문맥에 상관없이 단어의 Vector들이 고정된 Vector를 가지는 문제가 있다. ELMo는 훈련된 Bi-LSTM 모델을 통해서 문장마다 Word Embedding을 수행하기 때문에 문맥에 상관없이 고정된 Vector를 가지는 문제를 해결하였다. 본 논문에서는 한국어와 같이 형태적으로 복잡한 언어의 경우 수 많은 단어가 파생될 수 있어 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있기 때문에 형태소의 표상들을 결합하여 단어 표상을 사용한 ELMo를 제안한다. ELMo 단어 임베딩을 Biaffine attention 파싱 모델에 적용 결과 UAS에서 91.39%, LAS에서 90.79%으로 기존의 성능보다 향상된 성능을 얻었다.

  • PDF