본 논문에서는 재생 커널 기법을 사용하여 혼합모드 균열진전 문제에 대한 연속체 기반의 형상 설계민감도 해석을 수행하였다. 재생 커널 기법은 기존의 유한요소법과 달리 요소망을 재구성할 필요가 없어, 커널 함수의 연속성을 증가시켰을 때 높은 정밀도의 형상함수를 얻을 수 있다는 장점을 가지고 있다. 균열선단 주변에서 J-적분을 수행하기 위해 선형탄성 조건이 고려되었다. 변위장과 응력 확대 계수의 설계변수에 대한 감도해석을 위하여 물질도함수를 도입하였으며 직접 미분법보다 효율적인 애조인 방법을 사용하여 설계민감도를 유도하였다. 수치 예제들을 통해서 재생 커널 기법을 이용한 균열진전 해석결과의 타당성을 확인하였으며 애조인 방법을 이용한 형상 설계민감도 해석 결과를 유한차분법과 비교하여 매우 정확하고 효율적인 결과를 얻을 수 있음을 알 수 있었다. 이를 바탕으로 간단한 모델에 대하여 형상 최적설계를 수행하여 균열이 발생될 수 있는 구조물에 대해서 균열에 의한 피해를 최소화할 수 있도록 균열을 제어할 수 있는 최적의 형상을 도출하였다.
Demand for the use of 3D CAD DMU systems over the Internet environment has been increased. However, transmission of commercial 3D kernels has delayed the communication effectiveness due to the kernel size. Light weight CAD geometric kernel design methodology is required for rapid transmission in the distributed environment. In this paper, an assembly data structure suitable for the top-down and bottom-up assembly models has been constructed. Part features are stored without a hierarchy so that they are created and saved in no particular order. In particular, this paper proposes a new assembly representation model, called multi-level assembly representation (MAR), for the PDM based assembly DMU system. Since the geometric kernel retains assembly hierarchy and topological information, it is applied to the web-viewer for the PDM based DMU system. Effectiveness of the proposed geometric kernel is confirmed through various case studies.
장비 도입 시 해당 장비에 설치된 커널의 정확한 버전을 식별하는 것은 매우 중요하다. 특정 커널 버전에 취약점이 발견된 경우 이에 대해 조치 여부를 판단하거나, 특정 커널 버전의 제외 또는 포함 등에 대한 도입 요구 조건이 있는 경우 이를 판단하는데 사용될 수 있기 때문이다. 하지만 많은 시스템 및 네트워크 장비 제조업체들은 공식적으로 배포되고 있는 리눅스 기저 커널을 그대로 사용하지 않고, 장비에 최적화된 펌웨어를 제작하기 위해 커널을 수정하여 사용하므로 리눅스 커널 버전을 판단하기 어려운 상황이 발생한다. 또한, 커널의 패치가 공개될 경우 제조사는 수정한 커널에 패치 내용을 반영하므로, 이런 과정이 지속될 경우 커스터마이징된 커널은 리눅스 기저 커널과 매우 다른 형상이 된다. 따라서, 특정 파일 존재 여부 등의 단순한 방법으로는 리눅스 커널을 정확히 식별하기 어렵다. 새로운 리눅스 커널 버전이 공개될 때는 새로운 함수가 포함되기도 하고 기존 함수가 삭제되기도 한다. 본 논문에서는 심볼 테이블에 저장된 함수명을 이용하여 펌웨어 커널 버전의 정적 식별 방안을 제안하고 실험을 통해 그 실효성을 증명하였다. 100개의 리눅스 펌웨어를 대상으로 한 실험에서 99%의 정확도로 리눅스 커널 버전을 식별할 수 있었다. 본 연구를 통해 펌웨어 이용 환경의 보안성 향상에 기여할 것으로 기대한다.
기존의 솔리드 모델링 시스템은 형상 표현에 있어서의 제약성과 통합 시스템으로서의 폐쇄성으로 인하여 응용 범위에 제약이 따른다. 이러한 약점을 극복하고자 하는 노력의 일환으로서, 최근에 등장한 것이 비다양체 모델을 지원하는 CAD 시스템 커널이다. 본 논문에서는 이러한 비다양체 모델을 지원할 수 있는 모델링 커널 시스템 개발의 기초가 되는 비다양체 자료구조와 이것을 바탕으로 한 오일러 공식 및 오일러 작업에 대해 소개한다. 그리고 이러한 오일러 작업을 실제로 구현하여 모델링 작업을 수행해 봄으로써, 본 논문에서는 제안된 비다양체 자료구조와 오일러 작업의 유용성을 보인다.
터빈 사이클 보정 열 성능 분석은 발전소의 현재 성능을 결정하고 향상된 경제성 운전을 위해 요구된다. 본 연구에서는 신뢰성있는 성능 분석을 위해서 산업 표준인 ASME(American Society of Mechanical Engineers) PTC(Performance Test Code)를 기본으로 성능 분석에서 우선적으로 중요하게 적용되는 주급수 유량을 대상으로 영역별 판정 알고리즘을 개발하고 각 영역별로 현재의 터빈 사이클 성능을 추정하는 알고리즘을 개발하였다. 추정 알고리즘은 측정 상태량의 상관 관계를 기반으로 영역별로 형상 분류를 제시하고, 이를 기반으로 커널 회귀 모델을 이용하여 학습된 추정 모델을 구성하였으며, 커널 회귀 모델링의 우수성을 검증하기 위하여 신경 회로망 모델의 학습 결과와 비교하였다. 주급수 유량의 형상 특성에 따른 분류 및 추정 모델은 터빈 사이클에서 정확한 보정 열 성능 분석을 제공함으로써 성능 분석의 신뢰도를 증가시킬 수 있었으며 다른 성능 결정 변수에 대한 학습 및 검증 모델로 사용될 수 있다.
본 논문에서는 SVM (Support Vector Machine)을 기반으로 하여 인체의 뇌 하부구조인 해마에 대한 지능적 형상분석 방법을 제공한다. 일반적으로 의료 영상으로부터 해마의 형상 분석을 하기 위해서는 충분한 임상 데이터를 필요로 한다. 하지만 현실적으로 많은 양의 표본들을 얻는 것이 쉽지 않기 때문에 전문가의 지식을 기반으로 한 작업이 수반되어야 한다. 결국 이러한 요소들이 분석 작업을 어렵게 한다. 의학 기술이 복잡해 지면서 최근의 형상 분석 연구는 점차 통계적 모델을 기반으로 진행되고 있다. 본 연구에서는 해마로부터 고해상도의 매개변수형 모델을 만들어 형상 표현으로 이용하고, 집단간 분류 작업에 SVM 알고리즘을 적용하는 지능적 분석 방법을 구현한다. 우선 메쉬 데이터로부터 물리변형모델 기반의 매개변수 모델을 구축하고, PDM (point distribution model) 방법을 적용하여 두 집단을 대표하는 평균 모델을 생성한다. 마지막으로 SVM 기반의 이진 분류기를 구축하여 집단간 분류 작업을 수행한다. 구현한 모델링 방법과 분류기의 성능을 평가하기 위하여 본 연구에서는 네 가지 커널 함수 (linear, radial basis function, polynomial, sigmoid)들을 적용한다. 본 논문에서 제시한 매개변수형 모델은 다양한 형태의 의료 데이터로부터 보편적인 3차원 모델을 생성하고, 또한 모델의 전역적, 국부적인 특징들을 복합적으로 표현할 수 있기 때문에 통계적 형상분석에 적합하다. 그리고 SVM 기반의 분류기는 적은 수의 학습 데이터로부터 정상인 해마 집단과 간질 환자 집단간의 정확한 분류를 가능하게 한다.
Developed in this research is a surface modeling kernel for various CAD/CAM applications. Its internal surface representations are rational parametric polynomials, which are generalizations of nonrational Bezier, Ferguson, Coons and NURBS surface, and are very fast in evaluation. The kernel is designed under the OOP concepts and coded in C++ on PCs. The present implementation of the kernel supports surface construction methods, such as point data interpolation, skinning, sweeping and blending. It also has NURBS conversion routines and offers the IGES and ZES format for geometric information exchange. It includes some geometric processing routines, such as surface/surface intersection, curve/surface intersection, curve projection and so forth. We are continuing to work with the kernel and eventually develop a B-Rep based solid modeler.
레벨셋 기법과 무요소법을 결합한 위상 및 형상 최적설계 기법을 개발하여 선형 탄성문제에 적용하였다. 설계민감도는 애드조인트법을 사용하여 효율적으로 구하였다. 해밀턴-자코비 방정식을 업-윈드 기법을 이용하여 수치적으로 풀었으며, 구조물의 경계는 레벨셋 함수를 이용하여 암시적으로 표현하였다. 구조물의 응답과 설계민감도를 얻기 위하여 암시적 함수를 사용하여 명시적 경계를 생성하였다. 재생 커널 기법에 기초하여 얻어진 전역 절점 기저함수를 사용하여 연속체 지배방정식의 변위장을 이산화하였다. 따라서 질점들을 연속체 영역의 어느 곳이든 위치시킬 수 있으며, 이는 통해 명시적 경계를 생성하는 것이 가능하며, 결과적으로 정확한 설계를 얻을 수 있다. 개발된 방법은 제한 조건이 있는 최적설계 문제에 대하여 라그랑지안 범함수를 정의한다. 이는 경계의 변화를 통하여 허용 부피 제한조건을 만족시키면서 컴플라이언스를 최소화한다. 최적설계 과정 동안 라그랑지안 범함수의 최적화조건을 만족시킴으로써 해밀턴-자코비 방정식을 풀기 위한 속도장을 얻는다. 기존의 형상 최적설계 기법에 비하여, 본 방법론은 위상과 형상의 변화를 쉽게 얻어낼 수 있다.
본 연구는 표면 파라미터 추정시 고려하는 주요 인자별로 각 조정모델들을 분류하고 그들의 추정정확도를 사전분석함으로써 이들 모델링 인자들이 각 대상파라미터의 추정에 주는 영향을 정량적으로 분석하였다. 현재 지표면형상에 대한 정보를 취득하기 위하여 라이다영상, 항공영상, SAR영상 등 다양한 자료가 활용되고 있고, 이들로부터 지표면 형상을 정량적으로 분석하기 위해서는 임의지점 주위의 관측값들을 이용하여 해당 지점의 형상을 구체적으로 파악하게 된다. 이러한 형상정보는 관측값 범위지정, 가중치방식, 그리고 수학적모델링 등 여러 인자들을 선정하여 산정할 수 있지만, 각 선정인자에 따라 표면의 형상정보는 다르게 산정되고 또한 그 정확도도 상이하게 된다. 따라서, 본 연구에서는 표면의 형상정보추출시 조정계산 인자들 따른 이러한 정확도를 비교함으로써 인자별 추정 정확도 변화 경향에 대한 진단을 실시하였다. 본 연구에서는 표면형상정보로 표고, 경사, 곡면의 2차계수를 대상으로 하고, 수학적함수, 커널크기, 가중유형별로 조정계산모델들을 구성하여 사전통계량을 계산하였고, 이에 따라 전통계량 변화를 비교 분석함으로써, 각 조정모델의 추정성능을 조정계산인자에 따라 정량적으로 비교분석하였다.
본 논문에서는 몰포러지 연산을 기본으로 하는 몰포러지 신경망(MNN: Morphological Neural Network) 기반 딥러닝 시스템을 제안하였다. 딥러닝에 사용되는 레이어는 몰포러지 레이어, 풀링 레이어, ReLU 레이어, Fully connected 레이어 등이다. 몰포러지 레이어에서 사용되는 연산은 에로전, 다이레이션, 에지검출 등이다. 본 논문에서 새롭게 제안한 MNN은 기존의 CNN(Convolutional Neural Network)을 이용한 딥러닝 시스템과는 달리 히든 레이어의 수와 각 레이어에 적용되는 커널 수가 제한적이다. 레이어 단위 처리시간이 감소하고, VLSI 칩 설계가 용이하다는 장점이 있으므로 모바일 임베디드 시스템에 딥러닝을 다양하게 적용할 수 있다. MNN에서는 제한된 수의 커널로 에지와 형상검출 등의 연산을 수행하기 때문이다. 데이터베이스 영상을 대상으로 행한 실험을 통해 MNN의 성능 및 딥러닝 시스템으로의 활용 가능성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.