• 제목/요약/키워드: 혐기소화액

검색결과 74건 처리시간 0.024초

유기성고형폐기물의 연속 중온 건식혐기성소화 (Continuous Mesophilic-Dry Anaerobic Digestion of Organic Solid Waste)

  • 오세은;이모권;김동훈
    • 대한환경공학회지
    • /
    • 제31권5호
    • /
    • pp.341-345
    • /
    • 2009
  • 음식물쓰레기와 종이류로 구성된 유기성고형폐기물(고형물 함량 30% TS)을 대상으로 중온 건식혐기성소화를 시도하였고, 연속 운전 중 수리학적 체류 시간(HRT)을 150일, 100일, 60일, 40일로 감소시켰다. 기질의 고형물 농도를 30% TS (Total Solids)로 고정하였기 때문에 각각의 HRT에 해당하는 고형물 부하는 2.0, 3.0, 5.0, 7.5 kg TS/$m^3$/d였다. HRT를 줄임에 따라 단위용적 당 바이오가스 생산 속도는 증가하였고, HRT 40일에서 3.49${\pm}$0.31 $m^3/m^3/d$로 가장 높은 성능을 보였다. 이 때, 76%의 휘발성 고형물(VS) 분해율이 유지되었고, 0.25 $m^3$/kg $TS_{added}$의 메탄 생산 전환율을 보였으며, 이는 기질의 67.4%에 해당하는 에너지가 메탄 가스로 전환된 것을 의미한다. HRT 100일에서 0.52 $m^3$/kg $TS_{added}$로 가장 높은 바이오가스 전환율을 보였지만, 모든 HRT에서 0.45${\sim}$0.52 $m^3$/kg $TS_{added}$로 큰 차이가 나지 않았다. 고형물 함량이 높은 기질의 원활한 주입을 위해 소화조 발효액의 일부를 기질 투입구로 반송하여 기질과 혼합 후 주입하였다. 주입하고자 하는 기질의 5배에 해당하는 양의 소화조 발효액을 반송하여 혼합하였을 때, 가장 효과적인 기질 주입이 이루어졌다. 중온 건식 조건에서 서식하는 메탄 소화균의 활성도를 측정한 결과, 아세트산, 뷰틸산, 프로피온산을 이용할 경우 각각 2.66, 1.94, 1.20 mL $CH_4/g$ VS/d였다.

DGGE를 이용한 PCE 및 TCE의 혐기적 탈염소화 군집의 미생물 군집분석 (Analysis of Microbial Community during the Anaerobic Dechlorination of PCE/TCE by DGGE)

  • 김병혁;조대현;성열붕;안치용;윤병대;고성철;오희목;김희식
    • 한국미생물·생명공학회지
    • /
    • 제38권4호
    • /
    • pp.448-454
    • /
    • 2010
  • 광양, 하남, 여천지역의 토양, 하천 및 해양 퇴적물 등을 이용하여, 난분해성 염소화합물인 PCE (perchloroethylene) 및 TCE(trichloroethylene)의 혐기성 탈염소화에 관련하는 미생물을 탐색하고 이들의 탈염소화 효율을 조사하였다. 혐기성 상호대사에 의한 탈염소화 효율을 조사하기위해 전자 공여체로 아세테이트를 사용하여 혐기성 회분식 실험을 실시 하였으며, 미생물 군집을 분석하기 위해, 분자생물학적인 기법인 16S rDNA의 DGGE 기법을 이용하였다. 그 결과, 4주간 집적배양을 통해 광양, 하남, 여천시료는 PCE와 TCE를 PCE 75% 이상, TCE 81% 이상 탈염소화하는 것으로 나타내며, 여천시료가 우수한 PCE/TCE탈염소화율을 보이고 있다(PCE 87.37%, TCE 84.46%). 또한, 전자 수용체에 따른 탈염소화 배양액의 미생물 다양성은 DGGE로 분석하였으며, 우점하는 미생물은 Clostridium sp., Desulfotomaculum sp.와 unculutured bacteria로 나타났다.

BGP(Biogas Plant) 발생폐수의 분리막 적용 연구 (Study on application of membrane for wastewater in biogas plants)

  • 김신영;장인성;김장규;유명중
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 추계학술발표논문집 1부
    • /
    • pp.503-503
    • /
    • 2010
  • 국제협약에 따라 2012년부터 유기성폐기물의 해양배출이 금지됨에 따라 환경문제를 유발하는 축산분뇨, 음식물쓰레기, 농축산 폐기물 등의 처리가 곤란한 실정이다. 그러나 최근 저탄소 녹색성장으로 정부가 폐자원 에너지화에 관심을 기울이면서 위의 폐기물을 바이오가스로 전환하는 바이오가스 플랜트(Biogas Plant, BGP)의 이용이 보다 활성화 될 전망이다[1]. 이 바이오가스 처리방법에서 유기물은 메탄가스로 배출되고[2], 나머지 영양성분들(질소, 인산, 칼륨 등)은 모두 소화액에 남아있으므로[3] 이들은 친환경농업에서 필요한 액비로도 활용이 가능하며, 혐기소화 처리방법은 일반적인 가축분뇨 처리과정에서 발생되는 악취문제도 해결할 수 있는 장점 또한 가지고 있다. BGP는 유기성 폐기물에서 혐기성소화를 통해 바이오가스를 만드는 장점이 있는 반면, 가스를 만들고 남은 소화액은 액비로 활용이 가능하지만, 액비로 활용이 불가능할 경우 악성 폐수로 그 처리가 매우 까다로운 단점이 있다. 일반적인 생물학적인 폐수처리방법으로는 처리가 곤란하며, 환경기준을 맞추도록 처리하는데 많은 비용이 소요된다. 이러한 폐액처리를 위해 공정의 단순화와 높은 처리 효율[4]을 가지면서, 액비 또는 정화처리공정이 가능한 방법으로서 분리막공정이 바람직하나, BGP 발생폐액의 성상이 고농도의 오염물질을 함유하고 있어 적용이 쉽지 않다. 따라서 본 연구에서는 이를 보안할 수 있는 와류발생형 막모듈을 이용하여 Biogas Plant의 발생폐수에 대하여 분리막을 이용한 효과적인 처리공정을 개발하고 그에 따른 최적의 조건을 찾는 연구를 하고자 한다. 와류발생형 막모듈을 막과 막 사이에 와류를 발생시킴으로써 막에 전단력을 가하여 막의 가장 큰 단점인 막오염을 줄이는 방법으로 기존의 막모듈과 큰 차이가 있을 것으로 예상된다. 본 연구에서는 기존의 분리막 모듈[5]과 와류발생형 막모듈의 차이를 실험을 통해 확인하며, 막에 가해지는 압력, 막을 통과하는 유량 등의 차이를 두어 최적조건을 탐색하였다.

  • PDF

회분식 혐기소화에 의한 혐기적 유기물 분해율의 보정 방법 (Correction Method of Anaerobic Organic Biodegradability by Batch Anaerobic Digestion)

  • 김승환;오승용;김창현;윤영만
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.1086-1093
    • /
    • 2012
  • 본 연구는 유기성 바이오매스의 혐기소화율 평가에 주로 이용되는 VDI4630법에 대하여 소화액에 녹아 있는 탄산이온 ($CO_3{^{2-}}$)과 혐기소화 미생물 반응에 참여하는 수분 ($H_2O$)이 유기물의 혐기적 분해율에 미치는 영향을 분석하였으며, 이를 위해 탄산이온과 수분반응물에 의한 유기물의 혐기적 분해율 산출 보정식을 개발 하고자하였다. 돼지 혈액, 돼지 내장잔재물, 돼지 장내잔재물, 소 반추위잔재물의 화학조성식은 각각 $C_{3.78}H_{8.39}O_{1.46}N_1S_{0.01}$, $C_{9.69}H_{15.42}O_{2.85}N_1S_{0.03}$, $C_{25.17}H_{43.32}O_{15.04}N_1$, $C_{27.23}H_{42.38}O_{15.93}N_1S_{0.11}$으로 나타났으며, 돼지 혈액, 돼지 내장 잔재물, 돼지 장내잔재물, 소 반추위잔재물에서 이론적으로 1 mol의 유기물이 분해되는데, 0.336, 0.485, 0.227, 0.266 mol의 수분이 참여하였다. 혐기적 유기물 분해율에서 이론적 메탄생산퍼텐셜 대비 실험적 메탄생산퍼텐셜 ($B_u/B_{th}$)의 비율로 산출한 유기물 분해율은 돼지 혈액, 돼지 내장 잔재물, 돼지 장내잔재물, 소 반추위잔재물에서 각각 82.3, 81.5, 70.8, 66.1%이었으며, VDI4630에 근거한 유기물 분해율 (AB)은 각각 72.2, 87.8, 74.2, 62.0%를 보여 이론적 메탄생산퍼텐셜 대비 실험적 메탄생산퍼텐셜 ($B_u/B_{th}$)의 비율로 산출하는 유기물 분해율과는 전체 시험구에서 통계적으로 유의성 있는 차이를 보였다. VDI4630법에 소화액 중의 알칼리도를 보정한 유기물 분해율 (AB-I)은 돼지 혈액, 돼지 내장 잔재물, 돼지 장내잔재물, 소 반추위잔재물에서 각각 72.4, 88.1, 74.5, 62.1%를 보였으며, 알칼리도와 수분 반응물을 동시에 보정한 유기물 분해율 (AB-II)에서는 각각 72.5, 88.5, 74.5, 62.3%를 보여 본 연구에서 시험한 각각의 시료에서의 유기물 분해율 AB, AB-I, AB-II 간의 평균은 통계적으로 유의성 있는 차이를 보이지 않았다. 그러나 알칼리도, 수분 반응물의 보정식은 유기물의 혐기적 분해율의 측정에서 좀 더 높은 정확도를 보일 수 있을 것으로 판단된다.

초음파가 폐활성 슬러지의 혐기성 소화에 미치는 영향(I) -초음파 및 알칼리 전처리를 이용한 폐활성 슬러지의 가용화- (Effect of Sonification on the Ananerobic Digestion of Waste Activated Sludge(I) -Disintegration of Waste Activated Sludge Using Ultrasonic and Alkaline Pre-treatments-)

  • 한선기;이채영
    • 유기물자원화
    • /
    • 제17권1호
    • /
    • pp.96-102
    • /
    • 2009
  • 본 연구에서는 혐기성 소화 성능 향상을 위해 초음파 및 알칼리 전처리에 의한 폐활성 슬러지의 가용화 효과를 조사하였다. 초음파 및 알칼리 전처리는 세포벽의 파괴로 인하여 모세관 흡입 시간을 증가시킬 뿐만 아니라 상등액의 용존성 화학적 산소요구량, 단백질 및 탁도 농도를 증가키는 것으로 나타났다. 알칼리와 초음파 전처리를 병행한 슬러지 가용화가 초음파 전처리만을 수행한 경우에 비해 용존성 화학적 산소요구량과 단백질 증가가 높은 것으로 나타났다. 알칼리와 초음파 전처리를 동시에 수행한 경우 폐활성 슬러지의 고형물 농도 증가에 따라 가용화 효율이 감소하는 것으로 조사되었다.

실험실 규모 2상 혐기성 소화를 이용한 음식물 쓰레기 탈리액의 처리 (Treatment of Food Waste Leachate using Lab-scale Two-phase Anaerobic Digestion Systems)

  • 허안희;이은영;김희준;배재호
    • 대한환경공학회지
    • /
    • 제30권12호
    • /
    • pp.1231-1238
    • /
    • 2008
  • 본 연구에서는 실험실 규모 2상 혐기성 소화를 이용하여 음식물 쓰레기 탈리액의 처리성을 평가하였다. 이를 위해 산발효조의 적정 유입 pH 및 HRT를 도출하고, 산발효조로의 메탄조 유출수 반송 효과, 메탄발효조에서 고형물 내부반송 및 온도의 영향을 파악하였다. 산발효조에서는 유입 pH 6.0, HRT 2일인 조건에서 메탄조 유출수 반송 후 산생성 및 VS 제거효율은 30% 및 40%에서 안정적으로 유지되었다. 유기물 부하 7 g COD/L/d 이하의 조건에서 고형물 내부반송에 의해 중온 및 고온메탄발효조의 유출수 SCOD는 반송 이전보다 낮거나 같은 수준으로 유지되었고 유기물 부하 증가에 따른 비메탄생성량(specific methane production, SMP)의 감소폭이 줄어들었다. 고형물 내부반송 이후 동일한 유기물 부하에서 COD 제거효율과 SMP는 중온메탄발효조가 고온보다 우수하였으며 이는 중온메탄발효조의 MLVSS 농도가 고온보다 높기 때문인 것으로 판단되었다. 따라서 고온산발효-중온메탄발효로 구성된 시스템이 고온산발효-고온메탄발효보다 COD 제거와 메탄발생면에서 우수한 것으로 나타났다.

음식 폐기물을 이용한 박테리아 셀룰로오스 생산 공정 잔류물의 혐기성 소화효율 (Anaerobic Digestion Efficiency of Remainder from Bacterial Cellulose Production Process using Food Wastes)

  • 김성덕;김성준
    • KSBB Journal
    • /
    • 제22권2호
    • /
    • pp.97-101
    • /
    • 2007
  • 본 연구는 당 연구실에서 구축하고 있는 음식물쓰레기 고부가 자원화zero-emission시스템의 마지막 단계에 해당하는 부분으로써 본 공정의 부산물인 음식물 쓰레기 당화고형분과 박테리아 셀룰로오스배양 후의 여액을 기질 원으로 하여 2상 UASB 반응기를 이용하여 혐기성 소화를 수행하였다. 산 반응조와 메탄 반응조는 각각 35, 40$^{\circ}C$에서 운전하였고 두 반응조의 유기물 부하율은 각각 3g-VS/L${\cdot}$day, 25,000 mg/L로 유지하였다. 공정부산물의 최적 소화조건을 찾기 위하여 F.W + B.C.R, B.C.R, B.C.R + S.S 순으로 단계적으로 주입, 운전한 결과, 최종 메탄 발효액의 pH는 각각 7.13, 7.17, 7.22이었고 COD 제거율은 각각 88, 90, 91%이었으며 메탄 생성율은 각각 0.26, 0.34, $0.32m^3-CH_4/kg-COD_{remove}$이었다. 세번째 단계인 B.C.R + S.S를 기질로 사용한 경우가 음식물 쓰레기만 사용한 경우보다 전환효율이 높았다. 이는 음식물 쓰레기를 바로 혐기성 소화하는 것보다 음식물 쓰레기로부터 고부가가치를 창출하고 그 잔액으로 혐기성 소화를 거치는 방법이 보다 경제적이고 유익함을 알 수 있다. 따라서 당 실험실에서 구축하고 있는 음식물 쓰레기 고부가 자원화 zero-emission 시스템은 음식물 쓰레기에 포함된 에너지를 최대한 회수하고 고부가가치를 창출함에 있어서 가장 이상적인 방법이라고 사료된다.

열가수분해 전처리가 양돈 슬러지의 메탄생산퍼텐셜에 미치는 영향 (Effect of the Pretreatment by Thermal Hydrolysis on Biochemical Methane Potential of Piggery Sludge)

  • 김승환;김호;김창현;윤영만
    • 한국토양비료학회지
    • /
    • 제45권4호
    • /
    • pp.524-531
    • /
    • 2012
  • 본 연구는 양돈슬러리의 혐기소화 효율 증진을 위하여 양돈슬러리를 고액분리 하고 이때 발생하는 슬러지케이크를 200, 220, 250, $270^{\circ}C$에서 각각 열가수분해 전처리하여 열가수분해 온도별 유기물의 가용화 효율과 혐기적 메탄생산 퍼텐셜을 분석하였다. 최종메탄생산퍼텐셜 ($B_u$)은 서로 다른 S/I 비율 (1:9, 3:7, 5:5, 7:3의 부피비)에서 73일간 혐기배양하여 구하였다. 양돈슬러리의 유기물 가용화율 ($S_{COD}$)은 $200{\sim}270^{\circ}C$ 열가수분해 반응에서 98.4~98.9%를 보였으며, 열가수분해액의 이론적 메탄생산퍼텐셜 ($B_{th}$)은 반응온도의 증가와 함께 증가하여 $200^{\circ}C$, $220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$에서 각각 0.631, 0.634, 0.705, $0.748Nm^3\;kg^{-1}-VS_{added}$로 나타났다. 열가수분해액의 최종메탄생산퍼텐셜 ($B_u$)은 $200^{\circ}C$의 열가수분해액에서 S/I 비율이 1:9에서 7:3으로 증가할수록 $0.197Nm^3\;kg^{-1}-VS_{added}$에서 $0.111Nm^3\;kg^{-1}-VS_{added}$로 감소하는 경향이 나타났으며, 다른 열가수분해 반응 온도 ($220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$)에서도 $200^{\circ}C$의 열가수분해액과 동일한 경향의 최종메탄생산퍼텐셜을 나타내었다. 유기물의 혐기적 분해율 ($B_u/B_{th}$)을 보면, $200^{\circ}C$ 열가수분해액은 S/I비율이 증가함에 따라 31.2%에서 17.6%까지 감소하였으며, $220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$의 열가수분해액에서 각각 36.4%에서 9.6%, 31.3%에서 0.8%, 26.6%에서 0.8%로 감소하는 것으로 나타나, 열가수분해 온도의 상승에 따라 유기물의 혐기적 분해능이 낮아졌다. 이러한 결과는 98% 대의 유기물 가용화율 ($S_{COD}$)을 보인 것과는 반대로 $250{\sim}270^{\circ}C$의 열가수분해액은 혐기소화에 분해저항성을 지니는 것으로 나타났다.

음식물 탈리액 처리를 위한 막결합형 고온 2상 혐기성 소화 공정의 평가 (Evaluation of a Thermophilic Two-Phase Anaerobic Digestion Coupled with Membrane Process for Garbage Leachate Treatment)

  • 이은영;전덕우;이상화;배재호;김정환;김영오
    • 상하수도학회지
    • /
    • 제26권1호
    • /
    • pp.21-27
    • /
    • 2012
  • This study evaluated the performance of a thermophilic two-phase anaerobic digestion (TTPAD) coupled with membrane process treating garbage leachate. The pilot-scale treatment system is consisted of thermophilic acidogenic reactor (TAR) and thermophilic methanogenic reactor (TMR) coupled with an ultrafiltration (UF) membrane unit. The hydraulic retention time of TAR and TMR were 4 and 20 days, respectively. Effluent TCOD and SCOD of the TTPAD were $25\;{\pm}\;6\;and\;12\;{\pm}\;3$ g/L, respectively, and the corresponding TCOD and SCOD removal efficiencies were 77% and 81%, respectively. Propionate was major acids as 75% in the effluent. Scum formation was not observed in TTPAD, which might be resulted from complete lipid degradation. However, TTPAD was appeared to be sensitive to free ammonia toxicity. The UF membrane was operated with constant pressure filtration at average TMP 1.3 atm. Permeate flux had a range of 15-30 $L/m^2/hr$. With UF membrane, TCOD removal increased from 77% to 93%, and this SS free effluent would be beneficial to subsequent processes such as ammonia stripping.

두 종류의 탈염소화미생물 배양액과 철분 첨가에 의한 염화에틸렌 오염토양 복원 (Remediation of Soil Contaminated by Chlorinated Ethylene Using Combined Application of Two Different Dechlorinating Microbial Cultures and Iron Powder)

  • 이태호;김형석
    • 유기물자원화
    • /
    • 제11권2호
    • /
    • pp.55-65
    • /
    • 2003
  • 인위적인 tetrachloroethylone(PCE) 오염토양($60{\mu}moles$ PCE/kg soil)에서 탈염소화미생물의 주입과 철분($Fe^0$) 첨가의 동시 적용이 PCE 및 유기염소화합물의 환원적 탈염소화에 미치는 영향을 조사하였다. 탈염소화미생물 주입에는 두 종류의 혐기성 박테리아 배양액, 즉, PCE를 cis-1,2-dechloroethylene(cis-DCE)까지 탈염소화하는 Desulfitobacterium sp. Y-51 균주의 순순미생물 배양액과 PCE를 에틸렌까지 완전히 탈염소화하는 PE-1 혼합미생물 배양액을 사용하였다. Y-51균주와 PB-1 혼합미생물 배양액을 각각 적용한 두경우(최종농도: 3mg dry cell weight/kg soil) 모두에서 40일 이내에 PCE가 cis-DCE로 전환되었다. $Fe^0$(0.1-1.0%(w/w))을 단독으로 오염토양에 적용한 경우, PCE의 탈염소화는 에틸렌 및 에탄까지 확장되어 진행되었으며. 탈염소화의 속도는 $Fe^0$의 첨가량에 의존하는 것으로 밝혀졌다. 탈염소화미생물과 철분을 동시에 적용한 경우, 각각을 단독으로 적용한 경우에 비하여 PCE의 탈염소화속도가 빨랐으며, PCE 탈염소화 및 최종 반응생성물의 생성 양상 또한 달랐다. Y-51균주 배양액과 0.1%의 $Fe^0$를 동시에 적용하였을 경우, PCE가 탈염소화되어 cis-DCE를 축적하였지만, PE-1 혼합미생물 배양액과 0.1%의 $Fe^0$를 동시에 적용하였을 경우에는 cis-DCE를 거쳐 보다 확장된 탈염소화반응을 보였다. 이러한 결과들로부터, 탈염소화미생물과 철분의 동시 적용, 특히, PE-1과 같이 PCE를 완전히 탈염소화하는 미생물 배양액과 철분의 병용은 실제적인 PCE 오염토양의 정화에 효과적일 것으로 판단되었다.

  • PDF