DOI QR코드

DOI QR Code

Correction Method of Anaerobic Organic Biodegradability by Batch Anaerobic Digestion

회분식 혐기소화에 의한 혐기적 유기물 분해율의 보정 방법

  • 김승환 (한경대학교 바이오가스연구센터) ;
  • 오승용 (한경대학교 바이오가스연구센터) ;
  • 김창현 (한경대학교 바이오가스연구센터) ;
  • 윤영만 (한경대학교 바이오가스연구센터)
  • Received : 2012.11.08
  • Accepted : 2012.12.04
  • Published : 2012.12.31

Abstract

This research was carried out to develop the correction method of VDI4630 method improving accuracy, and investigated the effects of carbonate ion ($CO_3{^{2-}}$) and reactant water ($H_2O$) on anaerobic organic biodegradability in VDI4630 method. Pig blood, pig intestine residue, pig digestive tract content, and cattle rumen content were experimented as waste biomasses. Chemical formulas of pig blood, pig intestine residue, pig digestive tract content, and cattle rumen content were $C_{3.78}H_{8.39}O_{1.46}N_1S_{0.01}$, $C_{9.69}H_{15.42}O_{2.85}N_1S_{0.03}$, $C_{25.17}H_{43.32}O_{15.04}N_1$, $C_{27.23}H_{42.38}O_{15.93}N_1S_{0.11}$, respectively. And amount of reactant moisture for the anaerobic degradation of organic materials were 0.336, 0.485, 0.227, 0.266 mol, respectively. In pig blood, pig intestine residue, pig digestive tract content, and cattle rumen content, anaerobic organic biodegradability presented as $B_u/B_{th}$ were 82.3, 81.5, 70.8, and 66.1%, and anaerobic organic biodegradability (AB) by VDI4630 method were 72.2, 87.8, 74.2, 62.0%, and that were significantly different with anaerobic organic biodegradability presented as $B_u/B_{th}$. The effects of carbonate ion and reactant water on anaerobic organic biodegradability were not significant, But Accuracy of anaerobic organic degradability was expected to able to be improved by the correction method of VDI4630 considering the carbonate ion at digestate and the reactant water quantified.

본 연구는 유기성 바이오매스의 혐기소화율 평가에 주로 이용되는 VDI4630법에 대하여 소화액에 녹아 있는 탄산이온 ($CO_3{^{2-}}$)과 혐기소화 미생물 반응에 참여하는 수분 ($H_2O$)이 유기물의 혐기적 분해율에 미치는 영향을 분석하였으며, 이를 위해 탄산이온과 수분반응물에 의한 유기물의 혐기적 분해율 산출 보정식을 개발 하고자하였다. 돼지 혈액, 돼지 내장잔재물, 돼지 장내잔재물, 소 반추위잔재물의 화학조성식은 각각 $C_{3.78}H_{8.39}O_{1.46}N_1S_{0.01}$, $C_{9.69}H_{15.42}O_{2.85}N_1S_{0.03}$, $C_{25.17}H_{43.32}O_{15.04}N_1$, $C_{27.23}H_{42.38}O_{15.93}N_1S_{0.11}$으로 나타났으며, 돼지 혈액, 돼지 내장 잔재물, 돼지 장내잔재물, 소 반추위잔재물에서 이론적으로 1 mol의 유기물이 분해되는데, 0.336, 0.485, 0.227, 0.266 mol의 수분이 참여하였다. 혐기적 유기물 분해율에서 이론적 메탄생산퍼텐셜 대비 실험적 메탄생산퍼텐셜 ($B_u/B_{th}$)의 비율로 산출한 유기물 분해율은 돼지 혈액, 돼지 내장 잔재물, 돼지 장내잔재물, 소 반추위잔재물에서 각각 82.3, 81.5, 70.8, 66.1%이었으며, VDI4630에 근거한 유기물 분해율 (AB)은 각각 72.2, 87.8, 74.2, 62.0%를 보여 이론적 메탄생산퍼텐셜 대비 실험적 메탄생산퍼텐셜 ($B_u/B_{th}$)의 비율로 산출하는 유기물 분해율과는 전체 시험구에서 통계적으로 유의성 있는 차이를 보였다. VDI4630법에 소화액 중의 알칼리도를 보정한 유기물 분해율 (AB-I)은 돼지 혈액, 돼지 내장 잔재물, 돼지 장내잔재물, 소 반추위잔재물에서 각각 72.4, 88.1, 74.5, 62.1%를 보였으며, 알칼리도와 수분 반응물을 동시에 보정한 유기물 분해율 (AB-II)에서는 각각 72.5, 88.5, 74.5, 62.3%를 보여 본 연구에서 시험한 각각의 시료에서의 유기물 분해율 AB, AB-I, AB-II 간의 평균은 통계적으로 유의성 있는 차이를 보이지 않았다. 그러나 알칼리도, 수분 반응물의 보정식은 유기물의 혐기적 분해율의 측정에서 좀 더 높은 정확도를 보일 수 있을 것으로 판단된다.

Keywords

References

  1. Angelidaki, I. and W. Sanders. 2004. Assessment of the anaerobic biodegradability of acropollutants. Rev. Environ. Sci. Biotechnol. 3(2):117. https://doi.org/10.1007/s11157-004-2502-3
  2. Angelidaki, I., M. Alves, D. Bolzonella, L. Borzacconi, J.L. Campos, A.J. Guwy, S. Kalyuzhnyi, P. jenicek, and J.B. van Lier. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crop: a proposed protocol for batch assays. Water Sci. technol. 59(5):927-934. https://doi.org/10.2166/wst.2009.040
  3. AOAC. 1990. Official methods of analysis, Association of Official Analytical Chemists, Washington, D.C., USA. 15th Edition: 807-928.
  4. APHA (American Public Health Association). 1998. Standard methods for the examination of water and wastewater, 20th ed.
  5. ASTM Intemational, ASTM E2170-01. 2008. Standard test method for determining anaerobic biodegradation potential of organic chemicals under methanogenic conditions. Weat Conshohocken, PA : ASTM intemational.
  6. Beuvink, J.M., S.F. Spoelstra, and R.J. Hogendrop. 1992. An automated method ofr measuring the time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth. J. Agri. Sci. 40:401-407.
  7. Boyle, W.C. 1976. Energy recovery from sanitary landfills-a review. In: Schlegel, H.G., and, J., Barnea (Eds.), Microbial Energy Conversion. Pergamon Press Oxford, 119-138.
  8. Hansen, T.L., J.E. Schmidt, I. Angelidaki, E. Marca, J.C. Jansen, H. Mosbæk, and T.H. Christensen. 2004. Measurement of methane potentials of solid organic waste. Waste Manage. 24(4):393-400. https://doi.org/10.1016/j.wasman.2003.09.009
  9. Kim, S.H., H.C. Kim, C.H. Kim, and Y.M. Yoon. 2010. The measurement of biochemical methane potential in the several organic waste resources. Korean J. Soil Sci. Fert. 43(3):356-362.
  10. Lay, J.J., Y.Y. Li, and T. Noike. 1998. Development of bacterial population and Methanogenic activity in a laboratory-scale landfill bioreactor. Water Res. 32:3673-3679. https://doi.org/10.1016/S0043-1354(98)00137-7
  11. Owen, W.F., D.C. Stuckey, J.B. Jr.Healy, L.Y. Young, and P.L. McCarty. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13:485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  12. Owens, J.M. and D.P. Chynoweth. 1993. Biochemical methane potential of municipal solid-waste (MSW) components. Water Sci. Technol. 27(2):1-14. https://doi.org/10.1021/es00038a700
  13. Raposo. F., V. Fernandez-Cegri, M.A. DelaRubia, R. Borja, F. Beline, C. Cavinato, G. Demirer, B. Fernandez, M. Fdz-Polanco, J.C. Frigon, R. Ganesh, P. Kaparaju, J. Koubova, R. Mendez, G. Menin, A. Peene, P. Scherer, M. Torrijos, H. Uellendahl, I. Wierinck, and V.de Wilde. 2011. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 86(8):1088-1098. https://doi.org/10.1002/jctb.2622
  14. Shin, K.S., C.H. Kim, S.E. Lee, and Y.M. Yoon. 2011. Biochemical methane potential of agricultural waste biomass. Korea J. soil Sci. Fert. 44(5):903-915. https://doi.org/10.7745/KJSSF.2011.44.5.903
  15. Sorensen, A.H., M. Winther-Nielsen, and B.K. Ahring. 1991. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Micro biol. biotechnol. 34:823-827.
  16. VDI 4630. 2006. Fermentation of organic materials, characterisation of the substrates, sampling, collection of material data, fementation test. VDI-Handbuch Energietechnik.
  17. Williams, A., M. Amat-Marco, and M.D. Collins. 1996. Pylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of gram-positive bacteria. Int. J. Syst. Bacterol. 46:195-199. https://doi.org/10.1099/00207713-46-1-195

Cited by

  1. Minimization of diauxic growth lag-phase for high-efficiency biogas production vol.187, 2017, https://doi.org/10.1016/j.jenvman.2016.11.002