Anaerobic Digestion Efficiency of Remainder from Bacterial Cellulose Production Process using Food Wastes

음식 폐기물을 이용한 박테리아 셀룰로오스 생산 공정 잔류물의 혐기성 소화효율

  • Jin, Sheng-De (Department of Environmental Engineering, Chonnam National University) ;
  • Kim, Seong-Jun (Department of Environmental Engineering, Chonnam National University)
  • 김성덕 (전남대학교 건설지구환경공학부) ;
  • 김성준 (전남대학교 건설지구환경공학부)
  • Published : 2007.04.30

Abstract

This study was performed to examine the availability of anaerobic digestion of the remainders caused by bacterial cellulose production process using food wastes. They maybe to be considered as others second pollution sources. Thus, this study was targeted to minimize content of organic material and to obtain more energy in those remnants using two-phase UASB reactor. The working volume of first hydrolysis fermentor was 35 L (total 55 L) and the second methane fermentor was 40 L (total 50 L). The organic loading rate of hydrolysis fermentor was 3 g-VS/L${\cdot}$day and 25,000 ppm of $COD_{cr}$ for methane fermentor. The hydraulic retention time was 18 days for hydrolysis reactor and 33 days for methane reactor. The hydrolysis reactor and methane reactor were performed at 35, 40$^{\circ}C$ respectively. For the efficient stable performance, the composition of organic wastes at each stage was as follow; Food waste with bacterial culture remnants (1 : 1), bacterial cellulose remnants, bacterial cellulose culture remnants with food wastes saccharified solids (1 : 1). When the anaerobic digestion was performed stably at each stage, the COD removal efficiency was 88, 90, 91 % respectively. At this time, methane production rate was 0.26, 0.34, $0.32m^3\;CH_4/kg-COD_{remove}$. As well as the values of anaerobic digestion at third stage were more higher than values of anaerobic digestion using food wastes. It is clearly to say that the food wastes zero-emission system constructed in our lab is more efficient way to treat and reclaim food wastes.

본 연구는 당 연구실에서 구축하고 있는 음식물쓰레기 고부가 자원화zero-emission시스템의 마지막 단계에 해당하는 부분으로써 본 공정의 부산물인 음식물 쓰레기 당화고형분과 박테리아 셀룰로오스배양 후의 여액을 기질 원으로 하여 2상 UASB 반응기를 이용하여 혐기성 소화를 수행하였다. 산 반응조와 메탄 반응조는 각각 35, 40$^{\circ}C$에서 운전하였고 두 반응조의 유기물 부하율은 각각 3g-VS/L${\cdot}$day, 25,000 mg/L로 유지하였다. 공정부산물의 최적 소화조건을 찾기 위하여 F.W + B.C.R, B.C.R, B.C.R + S.S 순으로 단계적으로 주입, 운전한 결과, 최종 메탄 발효액의 pH는 각각 7.13, 7.17, 7.22이었고 COD 제거율은 각각 88, 90, 91%이었으며 메탄 생성율은 각각 0.26, 0.34, $0.32m^3-CH_4/kg-COD_{remove}$이었다. 세번째 단계인 B.C.R + S.S를 기질로 사용한 경우가 음식물 쓰레기만 사용한 경우보다 전환효율이 높았다. 이는 음식물 쓰레기를 바로 혐기성 소화하는 것보다 음식물 쓰레기로부터 고부가가치를 창출하고 그 잔액으로 혐기성 소화를 거치는 방법이 보다 경제적이고 유익함을 알 수 있다. 따라서 당 실험실에서 구축하고 있는 음식물 쓰레기 고부가 자원화 zero-emission 시스템은 음식물 쓰레기에 포함된 에너지를 최대한 회수하고 고부가가치를 창출함에 있어서 가장 이상적인 방법이라고 사료된다.

Keywords

References

  1. http://www.nier.go.kr/library/search/ (2006)
  2. Cho, J. K., S. C. Park, and H. N. Chang (1995), Biochemical methane potential and solid state anaerobic digestion of Korean food wastes, Bioresour. Technol. 52(3), 245-253 https://doi.org/10.1016/0960-8524(95)00031-9
  3. Ghanem, I. I. I., G. Gu, and J. F. Zhu (2001), Leachate production and disposal of kitchen food solid waste by dry fermentation for biogas generation, Renew. Energy 23(3-4), 673-684 https://doi.org/10.1016/S0960-1481(00)00152-X
  4. Heo, N. H., S. C. Park, and H. Kang (2004), Effects of mixture ration and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge, J. Environ. Sci. Health A39(7), 1739-1756
  5. Kim, S. H., S. K. Han, and H. S. Shin (2004), Feasibility of bio hydrogen production by anaerobic co-digestion of food waste and sewage sludge, Int. J. Hydrogen Energy 29(15), 1607-1616 https://doi.org/10.1016/j.ijhydene.2004.02.018
  6. Kim, J. K., B. R. Oh, Y. N. Chun, and S. W. Kim (2006), Effects of temperature and hydraulic retention time on anaerobic digestion of food waste, J. Biosci. Bioeng. 102(4), 328-332 https://doi.org/10.1263/jbb.102.328
  7. Zhang, R. H., H. M. El-Mashad, K. Hartman, F. Y. Wang, G. Q. Liu, C. Choate, and P. Gamble (2007), Characterization of food waste as feedstock for anaerobic digestion, Bioresour. Technol. 98(4), 929-935 https://doi.org/10.1016/j.biortech.2006.02.039
  8. Yoo, S. S., K. C. Kim, Y. A. Oh, S. Y. Chung, and S. J. Kim (2002), The high production of cellulolytic enzymes using cellulosic wastes by a fungus, strain FJ1, Kor. J. Microbiol. Biotechnol. 30(2), 172-176
  9. Kim, K. C., S. W. Kim, M. J. Kim, and S. J. Kim (2005), Saccharification of foodwastes using cellulolytic and amylolytic enzymes from Trichoderma harzianum FJ1 and its kinetics, Biotechnol. Bioprocess Eng. 10, 52-59 https://doi.org/10.1007/BF02931183
  10. Son, C. J., S. Y. Chung, J. E. Lee, and S. J. Kim (2002), Isolation and cultivation characteristics of Acetobacter xylinum KJ1 producing bacterial cellulose in shaking cultures, J. Microbiol. Biotechnol. 12, 722-728
  11. Lee, O. S. and Y. J. Jeong (2001), Industrial application and biosynthesis of bacterial cellulose, Food industry and Nutrition. 6(1), 10-14
  12. Klemm, D., D. Schumann, U. Udhard, and S. Marsch (2001), Bacterial synthesized cellulose - artificial blood vessels formicrosurgery, Prog. Polym. Sci. 26, 1561-1603 https://doi.org/10.1016/S0079-6700(01)00021-1
  13. Weyerhaeuser, WO (1989), patent 23, 089071074
  14. Song, H. J., J. H. Seo, G. S. Cha, and S. J. Kim (2005), Production of bacterial cellulose using saccharified food wastes in 50-L air circulation bioreacror, J. Korean Soc. Urban Environ. 6(2), 21-27
  15. Kim, S. D., G. S. Chu, and S. J. Kim (2006), Effect of OLR on the Methane Fermentation using food wastes in two-phase UASB Reactor, J. Korean Soc. Urban Environ. 6(2), 53-60
  16. Andrew, D. E., L. S. Clesceri, and A. E. Greenberg (1995), Standard methode for the examination of water and wastewater, 19th ed., p10-157, APHA, washington DC
  17. Liang, W. D., P. Zheug, and Z. A. Chen (2006), Anaerobic digestion and post-treatment of swine wastewater using IC-SBR process with bypass of raw wastewater, Process Biochem. 41, 965-969 https://doi.org/10.1016/j.procbio.2005.10.022
  18. Chen, Y. G., J. Su, H. Y. Yuan, G. Zhou, and G. W. Gu (2007), Hydrolysis and acidification of waste activated sludge at different pHs, Water Res. 41, 683-689 https://doi.org/10.1016/j.watres.2006.07.030
  19. Wang, Q. H., M. Kuniobu . H. I. Ogawa, and Y. Kate (1999), Degradation of volatile fatty adds in highly efficient anaerobic digestion, Biomass Bio energy. 16, 407-416 https://doi.org/10.1016/S0961-9534(99)00016-1