• Title/Summary/Keyword: 현장 재료 강도

Search Result 419, Processing Time 0.031 seconds

Performance of Railway Roadbed Reinforced by Acrylate in Laboratory Experiment (실내실험을 통한 아크릴레이트의 철도노반 보강 성능)

  • Yoon, Hwan-Hee;Son, Min;Kim, Jin-Hwan;Kim, Dong-Hyun;Kim, Byung-Hyun;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.9-19
    • /
    • 2021
  • This paper deals with the reinforcement performance of acrylate for reinforcing the settled railway roadbed. Concrete tracks have the advantage of reducing track maintenance costs and high resistance to track destruction. However, roadbed settlement is occurring in some construction sections, and the safety of railways is a serious concern because of difficulties in maintenance. Currently, maintenance through the track restoration method is being carried out in Korea as a way of roadbed settlement in concrete tracks, but continuous re-settlement can occur because the roadbed itself cannot be reinforced, and there are very few cases of reinforcement of railway roadbeds and field application. So the development of reinforcement materials and construction methods to reinforce railway roadbeds is required. Therefore, in this paper, acrylate was selected as reinforcement material for railway roadbed, and the reinforcement performance of acrylate was analyzed through experiment. As a result, it was analyzed that the acrylate can penetrate into a permeability coefficient of 1×10-4 cm/sec, and secure uniaxial compression strength of 0.5 MPa/30min or more and stiffness of 80 MPa or more.

A Feasibility Study on the Use of Liner and Cover Materials Using Sewage Sludge (하수슬러지의 차수재 및 복토재로의 이용타당성에 관한 연구)

  • 유남재;김영길;박병수;정하익
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.43-71
    • /
    • 1999
  • This research is an experimental work of developing a construction material using municipal wastewater sludge as liner and cover materials for waste disposal landfill. Weathered granite soil and flyash, produced as a by-product in the power plant, were used as the primary additives to improve geotechnical engineering properties of sludge. For secondary additives, bentonite and cement were mixed with sludge to decrease the permeability and to increase the shear strength, respectively. Various laboratory test required to evaluate the design criteria for liner and cover materials, were carried out by changing the mixing ratio of sludge with the additives. Basic soil properties such as specific gravity, grain size distribution, liquid and plastic limits were measured to analyze their effects on permeability, compaction, compressibility and shear strength properties of mixtures. Laboratory compaction tests were conducted to find the maximum dry densities and the optimum moisture contents of mixtures, and their effectiveness of compaction in field was consequently evaluated. Permeability tests of variable heads with compacted samples, and the stress-controlled consolidation tests with measuring permeabilities of samples during consolidation process were performed to obtain permeability, and to find the compressibility as well as consolidational coefficients of mixtures, respectively. To evaluate the long term stability of sludges, creep tests were also conducted in parallel with permeability tests of variable heads. On the other hand, for the compacted sludge decomposed for a month, permeability tests were carried out to investigate the effect of decomposition of organic matters in sludges on its permeability. Direct shear tests were performed to evaluate the shear strength parameters of mixed sludge with weathered granite, flyash and bentonite. For the mixture of sludge with cement, unconfined compression tests were carried out to find their strength with varying mixing ratio and curing time. On the other hand, CBR tests for compacted specimen were also conducted to evaluate the trafficability of mixtures. Various test results with mixtures were assessed to evaluate whether their properties meet the requirements as liner and cover materials in waste disposal landfill.

  • PDF

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.

Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models (1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정)

  • Kim, Yongwon;Lee, Jiwan;Woo, Soyoung;Kim, Soohong;Lee, Jongjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1041-1052
    • /
    • 2022
  • This study is to estimate the optimal ecological flow and analysis the spatial distribution of fish habitat for Andong dam downstream reach (4,565.7 km2) using PHABSIM (Physical Habiat Simulation System) and River2D. To establish habitat models, the cross-section informations and hydraulic input data were collected uisng the Nakdong river basic plan report. The establishment range of PHABSIM was set up about 410.0 m from Gudam streamflow gauging station (GD) and about 6.0 km including GD for River2D. To select representative fish species and construct HSI (Habitat Suitability Index), the fish survey was performed at Pungji bridge where showed well the physical characteristics of target stream located downstream of GD. As a result of the fish survey, Zacco platypus was showed highly relative abundance resulting in selecting as the representative fish species, and HSI was constructed using physical habitat characteristics of the Zacco platypus. The optimal range of HSI was 0.3~0.5 m/s at the velocity suitability index, 0.4~0.6 m at the depth suitability index, and the substrate was sand to fine gravel. As a result of estimating the optimal ecological flow by applying HSI to PHABSIM, the optimal ecological flow for target stream was 20.0 m3/sec. As a result of analysis two-dimensional spatial analysis of fish habitat using River2D, WUA (Weighted Usable Area) was estimated 107,392.0 m2/1000 m under the ecological flow condition and it showed the fish habitat was secured throughout the target stream compared with Q355 condition.

Mineralogical and Physical Properties of Lime Plaster used in Wall Repair in Temple of Bagan, Myanmar (미얀마 바간지역 사원 벽체 보수에 사용되는 석회 플라스터의 광물학적 및 물리적 특성)

  • Ahn, Sunah;Kim, Eunkyung;Nam, Byeongjik;Hlaing, Chaw Su Su;Kang, Soyeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The purposes of this study were to analyze the mineralogical characteristics of slaked lime used for wall repair of traditional buildings in Bagan, Myanmar and to evaluate the physical properties of lime plaster produced by the same method as Bagan region. In the X-ray diffraction and thermal analysis of the Myanmar slaked lime, portlandite ($Ca(OH)_2$) and brucite ($Mg(OH)_2$) were detected as main constituent minerals, and a carbonate rock mainly composed of dolomite ($CaMg(CO_3)_2$) minerals may be used as a raw material to make slaked lime. The field-emission scanning electron microscope analysis showed that the Myanmar slaked lime was composed of irregularly shaped crystals of $0.5{\mu}m$ or larger and a small amount of $0.1{\mu}m$ of plate - like crystals. The size and uniformity of crystals in Myanmar lime is different from that of Korea slaked lime. This may be attributed to the effect of the mineral composition and the lime hydration method of Myanmar, which produces slurry by immersing the burnt lime in excess water for a long period of time. The compressive strength of the lime plaster in Myanmar resulted in a mean value of $1.13N/mm^2$ for the specimens cured for 28 days. The strength of the specimens with Bale juice was $1.03N/mm^2$, respectively. The lime is an air setting material that exhibits strength through long carbonation process. Therefore, it is necessary to evaluate physical properties according to curing period through long-term curing over 28 days in the future.

Bottom Ash on the Application for Use as Fine Aggregate of Concrete (바텀 애시를 콘크리트 잔골재로 사용하기 위한 활용성에 관한 연구)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Park, Seung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.173-179
    • /
    • 2014
  • This is an experimental study for recycling coal ash left over from coal use as a potential fine aggregate in concrete. Coal ash is generally divided into either fly ash or bottom ash. Fly ash has been utilized as a substitution material for cement in concrete mixes. On the other hand, bottom ash has the problem of low recycling rates, and thus it has been primarily reclaimed. This study partially substituted fine concrete aggregates with bottom ash to increase its application rate and therefore its recycling rate; its suitability for this purpose was confirmed. The concrete's workability dropped noticeably with increasing bottom ash content when a fixed water-cement ratio of concrete mix was used. Thus, concrete mixes with higher ratio levels are required. To address this problem, concrete was mixed using a polycarboxylate high-range water reducing agent. The fluidity and air entrainment immediately after mixing the concrete and 1 h after mixing were measured, thereby replicating the time concrete is placed in the field when produced either in a ready-mixed concrete or in a batch plant. As a result of this research, the workability and air entrainment were maintained 1 h after mixing for a concrete mixture with approximately 30% of its fine concrete aggregates substituted with the bottom ash. A slight drop in compression strength was seen; however, this confirmed that potential of using bottom ash as a fine aggregate in concrete.

Development of a Drainage System to Mitigate Moisture Damage for Bridge Deck Pavements (교면포장의 수분손상 저감을 위한 체류수 배수공법 개발)

  • Lee, Hyun-Jong;Kim, Hyung-Bae;Seo, Jae-Woon
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.129-140
    • /
    • 2007
  • A major purpose of this study is to develop a drainage system that can quickly drain water penetrated into pavement layers to mitigate pot holes which is one of the major distress types in bridge deck pavements. This system can be established by applying a thin drainage layer between waterproof and pavement layers. The most important elements for this system are the performance of waterproof layer and construction technique for the thin drainage layer. The porous asphalt mix with the maximum aggregate size of 10mm is first developed based on the porous asphalt mix design guide proposed by NCAT, and various physical and mechanical tests are performed to confirm that the porous mix satisfies all the specification requirements. In addition, a series of laboratory tests including low-temperature bending and bonding strength tests for the MMA(Methyl Methacrylate) type of waterproofing material. It is observed from the tests that the MMA material satisfies all the specification requirements. To evaluate the Reld performance of the drainage system, a field study has been conducted on a relatively small size bridge. The QC/QA tests are conducted on the both waterproofing and pavement materials. It has been found that the drainage system works well to drain the water penetrated into the pavement layers.

  • PDF

A Study on the Resistance of Freezing-Thawing for the Material of Concrete or Asphalt Using Smashed Rock (쇄석을 이용한 콘크리트 및 아스팔트용 재료의 동결융해 저항성)

  • Kim, Young-Su;Bang, In-Ho;Heo, No-Young;Lee, Jea-Ho;Choi, Jeong-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.35-47
    • /
    • 2002
  • Soil and rock were yielded during construction of subway in Taegu. Produced rock is a kind of a sedimentary rock with low strength and low durability of shrinkage. So it is difficult using for resources engineering. But in our country, it is very important to use material resources due to lack of natural resources. In this study, after cracking sedimentary rock like black shale and red shale, they are compared with granite which usually used road constriction field to investigate property of use for road construction. Consequently, the engineering character of origin rock is satisfactory, but the soundness test, black shale and red shale are less than KS 12.9%, 37.5% respectively. The result of concrete freezing-thawing test shows that the strength among three materials is not a wide difference but red shale has relatively low strength. The result of asphalt freezing-thawing test with 50 cycles indicates that the stability of red shale in lower than KS 484~561kg on base course, 336~375kg on surface course respectively. A further research should be needed for propriety to the material of shale.

  • PDF

The Effects of Nail Inclination in Soil Nailing by Finite Element Analysis (유한요소해석에 의한 쏘일네일링의 네일 경사각의 영향에 관한 연구)

  • 천병식;김원철;윤창기
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.19-27
    • /
    • 2004
  • Since the first construction of soil nailing in France in 1972, the application of soil nailing has increased. However, there is currently no design method which is universally accepted or agreed upon far soil nailed wall, because each of the design methods has different assumptions and, therefore, different approaches, moreover, since the suggested optimal inclination angles of nails are different by researchers. Therefore, the effect of nail inclination with soil nailing is analyzed by FEM. In this study, Finite element program SOILSTRUCT was applied for the effect analysis of nail inclination in soil nailed wall. For this finite element analysis, CEBTP No. 1 project data were used. The analyzed nail inclination ranged from 0$^{\circ}$ to 30$^{\circ}$ with 5$^{\circ}$ intervals. The result of finite element analysis showed that the most optimal inclination was 20$^{\circ}$ Also, the tension farce in the nails increased as the nail inclination increased. However, the effect of nail inclination on the wall deformation was very little. Therefore, constructability seems to be more important than nail inclination. Also, the tension force in the nails increases as the nail depth below the top of the wall increases, except f3r the lowest nail. Therefore, appropriate nail diameter should be used to prevent breakage of nails with considering nail strength-deformation interaction.

A Study on the Properties of Mortar using Wet-type Waste Sludge according to Heating Temperature (가열온도별 습식방식 폐슬러지를 활용한 모르타르의 특성에 관한 연구)

  • Kang, Suk-Pyo;Cho, Ku-Young;Lee, Jun;Kim, Chang-Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 2011
  • Recently, urban redevelopment programs and expansion of social infrastructure have caused massive amounts of construction waste in construction fields, and the mounds of it keep increasing every year. The disposal of construction waste is emerging as a national and social issue and the recycled powder generated by the treatment process of waste concrete is all being abolished or buried. Therefore, the purpose of this study is to utilize waste sludge generated by the wet-type treatment process of waste concrete as materials(binder, filler) for cement composite. This study evaluates physical and mechanical properties of mortar using recycled powder according to heating temperature, contents and applications. As a result of the chemical analysis, recycled powder is composed mainly of CaO and $SiO_2$, and that it is even lower in the content of CaO than OPC. The charateristics of mortar using recycled powder, according to drying and heating temperature, shows that as the heating temperature increases, flow decreases. Also, compressive strength and porosity of mortar using recycled powder was superior when heating temperature was $600^{\circ}C$. Thus, it is revealed that an effective development of recycled powder is possible since the binder by cement composite recovers a hydraulic property during heating at $600^{\circ}C$.

  • PDF