DOI QR코드

DOI QR Code

Mineralogical and Physical Properties of Lime Plaster used in Wall Repair in Temple of Bagan, Myanmar

미얀마 바간지역 사원 벽체 보수에 사용되는 석회 플라스터의 광물학적 및 물리적 특성

  • Ahn, Sunah (Restoration Technology Division, National Research Institute of Cultural Heritage) ;
  • Kim, Eunkyung (Restoration Technology Division, National Research Institute of Cultural Heritage) ;
  • Nam, Byeongjik (Restoration Technology Division, National Research Institute of Cultural Heritage) ;
  • Hlaing, Chaw Su Su (Department of Archaeology and National Museum, Ministry of Religious Affairs and Culture) ;
  • Kang, Soyeong (Restoration Technology Division, National Research Institute of Cultural Heritage)
  • 안선아 (국립문화재연구소 복원기술연구실) ;
  • 김은경 (국립문화재연구소 복원기술연구실) ;
  • 남병직 (국립문화재연구소 복원기술연구실) ;
  • 초수수 랭 (미얀마 종교문화부 고고박물관국) ;
  • 강소영 (국립문화재연구소 복원기술연구실)
  • Received : 2018.11.20
  • Accepted : 2018.11.29
  • Published : 2018.12.31

Abstract

The purposes of this study were to analyze the mineralogical characteristics of slaked lime used for wall repair of traditional buildings in Bagan, Myanmar and to evaluate the physical properties of lime plaster produced by the same method as Bagan region. In the X-ray diffraction and thermal analysis of the Myanmar slaked lime, portlandite ($Ca(OH)_2$) and brucite ($Mg(OH)_2$) were detected as main constituent minerals, and a carbonate rock mainly composed of dolomite ($CaMg(CO_3)_2$) minerals may be used as a raw material to make slaked lime. The field-emission scanning electron microscope analysis showed that the Myanmar slaked lime was composed of irregularly shaped crystals of $0.5{\mu}m$ or larger and a small amount of $0.1{\mu}m$ of plate - like crystals. The size and uniformity of crystals in Myanmar lime is different from that of Korea slaked lime. This may be attributed to the effect of the mineral composition and the lime hydration method of Myanmar, which produces slurry by immersing the burnt lime in excess water for a long period of time. The compressive strength of the lime plaster in Myanmar resulted in a mean value of $1.13N/mm^2$ for the specimens cured for 28 days. The strength of the specimens with Bale juice was $1.03N/mm^2$, respectively. The lime is an air setting material that exhibits strength through long carbonation process. Therefore, it is necessary to evaluate physical properties according to curing period through long-term curing over 28 days in the future.

본 연구는 미얀마 바간(Bagan)지역 전통 건축물의 벽체 보수에 사용되는 소석회에 대한 광물학적 특성을 분석하고 바간 지역 문화재 수리 현장과 동일한 방법으로 제조한 석회 플라스터의 물리적 특성을 파악하였다. 미얀마 소석회의 X-선 회절 분석과 열분석 결과 포틀랜다이트($Ca(OH)_2$)와 수활석($Mg(OH)_2$)이 주구성광물로 검출되었으며, 이를 통해 석회의 원석으로 백운석($CaMg(CO_3)_2$) 광물의 함량이 높은 탄산염 암석이 사용됐을 것으로 추정된다. 주사전자현미경 분석 결과 미얀마 소석회는 $0.5{\mu}m$ 이상의 불규칙한 형상을 가진 결정들과 소량의 $0.1{\mu}m$ 크기의 판상형 결정들이 응집되어 있고 전체적으로 매끄러운 조직 형태를 관찰할 수 있었는데, 국내에서 건식 소화시킨 소석회와 비교했을 때 결정의 크기나 균일도가 다른 것은 소석회 간 구성광물의 차이와 미얀마 특유의 전통 습식 소화방법에 의한 영향으로 판단된다. 28일 동안 양생한 미얀마 석회 플라스터의 압축강도 값은 평균 $1.13N/mm^2$이며, bale (Aegle marmelos) 열매의 물 추출액을 첨가한 플라스터 시편의 압축강도 값은 평균 $1.03N/mm^2$로 측정되었다. 석회는 장기간 탄산화 과정을 거쳐 강도가 발현되는 기경성 재료이므로 향후 28일 이상 장기 양생을 통해 양생기간별 물리적 특성의 변화 양상을 파악할 필요가 있다.

Keywords

References

  1. Amadori, M.L., Fermo, P., Raspugli, V., Comite, V., Mini, F.M., Maekawa, Y., and Russa, M.L. (2019) Integrated scientific investigations on the constitutive materials from Me-taw-ya Temple, Pagan Valley, Burma (Myanmar). Measurement, 131, 737-750. https://doi.org/10.1016/j.measurement.2018.09.004
  2. Arioglu, N. and Acun, S. (2006) A research about a method for restoration of traditional lime mortars and plasters: A staging system approach. Building and Environment, 41, 1223-1230. https://doi.org/10.1016/j.buildenv.2005.05.015
  3. Carran, D., Hughes, J., Leslie, A., and Kennedy, C. (2012) The effect of calcination time upon the slaking properties of quicklime. In: Valek, J., Hughes, J.J., and Groot, C.J.W.P. (eds.), Historic mortars, Springer, 283-295.
  4. Elert, K., Rodriguez-Navarro, C., Pardo, E.S., Hansen, E., and Cazalla, O. (2002) Lime Mortars for the Conservation of Historic Buildings. Studies in Conservation, 47, 62-75.
  5. Goodman, R.E. (1989) Introduction to Rock Mechanics. 2nd Edition, John Wiley & Sons Ltd., New York.
  6. Kamalakkannan, N. and Stanely, M.P.P. (2003a) Effect of Aegle marmelos Correa. (Bael) fruit extract on tissue antioxidants in streptozotocin diabetic rats. Indian Journal of Experimental Biology, 41, 1285-1288.
  7. Kamalakkannan, N. and Stanely, M.P.P. (2003b) Hypoglycaemic effect of water extracts of Aegle marmelos fruits in streptozotocin diabetic rats. Journal of Ethnopharmacology, 87, 207-210. https://doi.org/10.1016/S0378-8741(03)00148-X
  8. Kim, J.H. (2005) A Study on the Analysis of Lime Mortar Composition for the Preservation of Myung Dong Cathedral Church. Journal of Architectural History, 14, 89-101 (in Korean with English abstract).
  9. Kingery, W.D., Vandiver, P.B., and Prickett, M. (1988) The Beginnings of Pyrotechnology, Part II: Production and Use of Lime and Gypsum Plaster in the Pre-Pottery Neolithic near East. Journal of Field Archaeology, 15, 219-244.
  10. Lanas, J. and Alvarez, J.I. (2004) Dolomitic limes: evolution of the slaking process under different conditions. Thermochimica Acta, 423, 1-12. https://doi.org/10.1016/j.tca.2004.04.016
  11. Lanas, J., Perez Bernal, J.L., Bello, M.A., and Alvarez, J.I. (2006) Mechanical properties of masonry repair dolomitic lime-based mortars. Cement and Concrete Research, 36, 951-690. https://doi.org/10.1016/j.cemconres.2005.10.004
  12. Lee, K.H., Min, S.E., Lee, H.W., Cho, J.S., Cho, K.H., and Han, C. (2012) A Study on Characterization of Expansion Agent in Mortar with Light Burned Dolomite By-Product. Journal of the Korean Institute of Resources Recycling, 21, 12-22 (in Korean with English abstract). https://doi.org/10.7844/kirr.2012.21.6.12
  13. Littmann, E. R. (1959) Ancient Mesoamerican Mortars, Plasters, and Stuccos: Palenque, Chiapas. American Antiquity, 25, 264-266. https://doi.org/10.2307/277448
  14. Maity, P., Hansda, D., Bandyopadhyay, U., and Mishra, D.K. (2009) Biological activities of crude extracts and chemical constituents of Bael, Aegle marmelos (L.) Corr.. Indian Journal of Experimental Biology, 47, 11, 849-864.
  15. Mascolo, G., Mascolo, M.C., Vitale A., and Marino, O. (2010) Microstructure evolution of lime putty upon aging. Journal of Crystal Growth, 312, 2363-2368. https://doi.org/10.1016/j.jcrysgro.2010.05.020
  16. National Research Institute of Cultural Heritage. (2017) Scientific analysis on metal artifacts from Myanmar. National research institute of cultural heritage, Daejeon, 10p (in Korean).
  17. Noh, J.H. and Lee, N.K. (2007) Characterization and assessment of the dolomite powder for application as fillers in the marble-type ore. Journal of the mineralogical society of Korea, 20, 71-81 (in Korean with English abstract).
  18. Samtani, M., Dollimore, D., Wilburn, F.W., and Alexander, K. (2001) Isolation and identification of the intermediate and final products in the thermal decomposition of dolomite in an atmosphere of carbon dioxide. Thermochimica Acta, 367-368, 285-295. https://doi.org/10.1016/S0040-6031(00)00662-6
  19. Sharma, P.C., Bhatia, V., Bansal, N., and Sharma, A. (2007) A review on Bael tree. Natural product radiance, 6, 171-178.
  20. Tokyo National Research Institute for Cultural Properties (2016) Post-earthquake Damage Assessment Survey of Cultural Heritage Buildings at Bagan Archaeological Zone - Quick Report. Tokyo National Research Institute for Cultural Properties, Tokyo.
  21. Upadhyay, R.K (2015) Bel plant: A source of pharmaceuticals and ethno medicines. International Journal of Green Pharmacy, 9(4), 204-222.

Cited by

  1. 석회 종류와 배합비 별 문화재 보수용 석회 모르타르의 초기거동특성과 수축특성 연구 vol.36, pp.6, 2018, https://doi.org/10.12654/jcs.2020.36.6.02