DOI QR코드

DOI QR Code

Provenance Study of 99MAP-P63 Core Sediments in the East China Sea

동중국해 99MAP-P63 코어 퇴적물의 기원지 연구

  • Choi, Jae Yeong (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Koo, Hyo Jin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 최재영 (경상대학교 지질과학과 및 기초과학 연구소) ;
  • 구효진 (경상대학교 지질과학과 및 기초과학 연구소) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학 연구소)
  • Received : 2018.11.09
  • Accepted : 2018.12.10
  • Published : 2018.12.31

Abstract

East China Sea (ECS) is known to be supplied with large amounts of sediments form Huanghe, Changjiang and various rivers in Korea. Many studies have been conducted to identify the effects of rivers and deposition process of ECS, but no consensus has been reached. In this study, clay minerals, rare earth elements (REEs) and grain size were analyzed to study the provenance and sedimentation environment of core 99MAP-P63 in ECS. Clay mineral contents of 99MAP-P63 are abundant in order of illite, chlorite, kaolinite, and smectite. The provenance of 99MAP-P63 sediments using clay minerals is interpreted as the Changjiang regardless of depth. As a result of REEs analysis, 99MAP-P63 sediments are very similar to Chinese rivers sediments. Therefore, the provenance of 99MAP-P63 is Changjiang, and the influence of Korean river seems to be insignificant. 99MAP-P63 sediments are generally classified as sandy silt, but the top of the core is divided into sand with a sand contents of 85 %. Compared with surrounding cores, sandy silt sediments arecorresponded to the low stand stage when sea-level was low, and the sediments were thought to have been supplied directly through the paleo-Changjiang. Sandy sediments in uppermost of core are corresponded to transgressive stage. Although distance from estuary was increased due to sea-level rise, it was possible to supply coarse sediments due to high bottom stress, and the paleo-Changjiang sediments deposited in study area were re-deposited.

동중국해는 황하(Huanghe), 장강(Changjiang) 및 한국의 여러 강들로부터 많은 양의 퇴적물을 공급받는 것으로 알려져 있으며, 각 강들의 영향 및 퇴적과정을 밝혀내기 위해 많은 연구가 수행되었으나, 의견일치가 이루어지지 못하였다. 본 연구에서는 동중국해 퇴적물의 기원지 및 퇴적 환경 유추를 위해, 99MAP-P63 코어 퇴적물에 대해 입도, 점토광물 및 희토류원소 분석을 수행하였다. 점토광물 분석 결과, 일라이트(illite)의 함량이 가장 높고, 카올리나이트(kaolinite) 및 녹니석(chlorite), 스멕타이트(smectite)의 순으로 풍부하며, 점토광물을 이용한 99MAP-P63 퇴적물의 기원지는 깊이에 관계없이 모두 장강인 것으로 판단된다. 희토류원소 분석 결과, 99MAP-P63 퇴적물들은 중국 강 퇴적물의 희토류원소 함량과 매우 유사하다. 따라서 99MAP-P63 퇴적물들의 기원지는 장강이며, 한국 강의 영향은 미미하거나 없을 것으로 판단된다. 99MAP-P63 퇴적물은 대체로 사질 실트로 구분되지만, 코어의 최상부는 모래의 함량이 85 %인 사질로 구분된다. 주변 코어들과 비교한 결과, 사질 실트는 해수면이 낮았던 저수위기(lowstand stage)에 해당되며, 장강의 고수로를 통해 퇴적물들이 직접 공급되었을 것으로 판단된다. 코어 최상부의 사질 퇴적물은 해침기(transgressive stage)에 해당되며 해수면 상승으로 인해 강 하구와의 거리는 멀어졌지만, 현재보다 높은 해저면의 응력으로 인해 조립질 퇴적물들이 공급될 수 있었으며, 인근에 퇴적되었던 고 장강(paleo-Changjiang) 퇴적물들이 재동된 것으로 해석된다.

Keywords

References

  1. Alexander, C.R., DeMaster, D.J. and Nittrouer, C.A. (1991) Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea. Marine Geology, 98, 51-72. https://doi.org/10.1016/0025-3227(91)90035-3
  2. Badejo, A.O., Gal, J.K., Hyun, S.-M., Yi, H.-I., and Shin, K.-H. (2014) Reconstruction of paleohydrological and paleoenvironmental changes using organic carbon and biomarker analyses of sediments from the northern East China Sea. Quaternary International, 344, 211-223. https://doi.org/10.1016/j.quaint.2014.06.035
  3. Butenko, J., Milliman, J.D., and Yincan, Y. (1985) Geomorphology, shallow structure and geological hazards in the East China Sea. Continental Shelf Research, 4, 121-141. https://doi.org/10.1016/0278-4343(85)90025-1
  4. Cho, H.G., Kim, S.-O., Kwak, K.Y., Choi H.S., and Kim, B.-K. (2015) Clay mineral distribution and provenance in the Heuksan mud belt, Yellow Sea. Geo-Marine Letters, 35, 411-419. https://doi.org/10.1007/s00367-015-0417-3
  5. Choi, J.-Y., Lim, D.I., Park, C.H., Kim, S.-Y., Kang, S.R., and Jung, H.-S. (2010) Characteristics of clay mineral compositions in river sediments around the Yellow Sea and its application to the provenance of the continental shelf mud deposit. Journal of the Geology Society of Korea, 46, 497-509 (in Korean with English abstract).
  6. DeMaster, D.J., McKee, B.A., Nittrouer, C.A., Jiangchu, Q., and Guodong, C. (1985) Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research, 4, 143-158. https://doi.org/10.1016/0278-4343(85)90026-3
  7. Dou, Y., Yang, S., Liu. Z., Clift P.D., Shi, X., Yu, H., and Berne, S. (2010) Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: Constraints from rare earth element compositions. Marine Geology, 275, 212-220. https://doi.org/10.1016/j.margeo.2010.06.002
  8. Dou, Y., Yang, S., Lim, D.-I., and Jung, H.-S. (2015) Provenance discrimination of last deglacial and Holocene sediments in the southwest of Cheju Island, East China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 422, 25-35. https://doi.org/10.1016/j.palaeo.2015.01.016
  9. Hu, B., Yang, Z., Qiao, S., Zhao, M., Fan, D., Wang, H. Bi, N., and Li, J. (2014) Holocene shifts in riverine fine-grained sediment supply to the East China Sea Distal Mud in response to climate change. The Holocene, 24(10), 1253-1268. https://doi.org/10.1177/0959683614540963
  10. Hyun, S,M,, Lim, D.-I., and Yoo, H.-S. (2006) Transgressive Geochemical Records in the East China Sea. A Perspective with Holocene Paleoceanography, Economic and Environmental Geology, 39(1), 53-61.
  11. Jung, H.-S., Lim, D.-I., Yang, S., and Yoo, H.-S. (2006) Constraints of REE distribution patterns in core sediments and their provenance, northern East China Sea. Economic and Environmental Geology, 39, 39-51 (in Korean with English abstract).
  12. Jung, H.-S., Lim, D.I., Choi, J.-Y., Yoo, H.-S., Rho, K.-C., and Lee, H.-B. (2012) Rare earth element compositions of core sediments from the shelf of the South Sea, Korea: Their controls and origins. Continental Shelf Research, 48, 75-86. https://doi.org/10.1016/j.csr.2012.08.008
  13. Koo, H.J., Lee, Y.J., Kim, S.O., and Cho, H.G. (2018) Clay mineral distribution and provenance in surface sediments of Central Yellow Sea Mud, Geoscience Journal, 22, 989-1000. https://doi.org/10.1007/s12303-018-0019-y
  14. Kwak, K.Y., Choi, H., and Cho, H.G. (2016) Paleo-environmental change during the late Holocene in the southeastern Yellow Sea, Korea. Applied Clay Science, 134, 55-61. https://doi.org/10.1016/j.clay.2016.05.007
  15. Li, J., Hu, B., Wei, H., Zhao, J., Zou, L., Bai, F., Dou, Y., Wang, L., and Fang, X. (2014) Provenance variations in the Holocene deposits from the southern Yellow Sea: Clay mineralogy evidence, Continental Shelf Research, 90, 41-51. https://doi.org/10.1016/j.csr.2014.05.001
  16. Lim, D.I., Xu, Z., Choi, J.Y., Li, T., and Kim, S.Y. (2015) Holocene changes in detrital sediment supply to the eastern part of the central Yellow Sea and their forcing mechanisms, Journal of Asian Earth Sciences, 105, 18-31. https://doi.org/10.1016/j.jseaes.2015.03.032
  17. Milliman, J.D., Beardsley, R.C., Yang, Z., and Limeburner, R. (1985) Modem Huanghe-derived muds on the outer shelf of the East China Sea: identification and potential transport mechanisms. Continental Shelf Research, 4, 175-188. https://doi.org/10.1016/0278-4343(85)90028-7
  18. Park, S.-C., Han, H.-S., and Yoo, D.-G. (2003) Transgressive sand ridges on the mid-shelf of the southern sea of Korea (Korea Strait): formation and development in high-energy environments. Marine Geology, 193, 1-18. https://doi.org/10.1016/S0025-3227(02)00611-4
  19. Qiao, S., Shi, X., Wang, G., Zhou, L., Hu, B., Hu, L., Yang, G., Liu, Y., Yao. Z., and Liu, S. (2017) Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea. Marine Geology, 390, 270-281. https://doi.org/10.1016/j.margeo.2017.06.004
  20. Saito, Y. (1998) Sedimentary environment and budget in the East China Sea. Bulletin on Coastal Oceanography, 36, 43-58 (in Japanese).
  21. Song, Y.H. and Choi, M.S. (2009) REE geochemistry of fine-grained sediments from major rivers around the Yellow Sea. Chemical Geology, 266, 328-342. https://doi.org/10.1016/j.chemgeo.2009.06.019
  22. Taylor, S.R. and McLennan, S.M. (1985) The continental crust: its composition and evolution. Blackwells, Oxford, 312p.
  23. Uehara, K. and Saito, Y. (2003) Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology. Sedimentary Geolohy, 162, 25-38. https://doi.org/10.1016/S0037-0738(03)00234-3
  24. Wang, L. (1999) Holocene variations in Asian monsoon moisture: a bidecadal sediment record from South China Sea. Geophysical Research Letters, 26, 2889-2892. https://doi.org/10.1029/1999GL900443
  25. Xu, Z., Lim, D.I., Choi, J.Y., Yang, S., and Jung H.S. (2009) Rare earth elements in bottom sediments of major rivers around the Yellow Sea: implications for sediment provenance. Geo-Marine Letters, 29, 291-300. https://doi.org/10.1007/s00367-009-0142-x
  26. Yang. S., Jung, H.S., Lim, D.I., and Li, C.X. (2003a) A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews, 63, 93-120. https://doi.org/10.1016/S0012-8252(03)00033-3
  27. Yang, S., Li, C., Lee, C.B., and Na, T.K. (2003b) REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators. Chinese Science Buletin, 48, 1135-1139. https://doi.org/10.1007/BF03185768
  28. Yang, S. and Youn, J.-S. (2007) Geochemical compositions and provenance discrimination of the central Yellow Sea sediment. Marine Geology, 243, 229-241. https://doi.org/10.1016/j.margeo.2007.05.001
  29. Yang, S., Wang, Z., Dou, Y., and Shi, X. (2014) A review of sedimentation since the Last Glacial Maximum on the continental shelf of eastern China. Continental Shelves During Last Glacioeustatic Cycle: Shelves of the World, Geological Society of London, Memoirs, 293p.
  30. Yang, W., Chen, M., Li, G., Cao, J., Guo, Z., Ma, Q., Liu, J., and Yang, J. (2009) Relocation of the Yellow River as revealed by sedimentary isotopic and elemental signals in the East China Sea. Marine Pollution Bulletin, 58, 923-927. https://doi.org/10.1016/j.marpolbul.2009.03.019
  31. Yoo, D.G., Lee, C.W., Kim, S.P., Jin, J.H., Kim, J.K., and Han, H.C. (2002) Late Quaternary transgressive and highstand systems tracts in the northern East China Sea mid-shelf. Marine Geology, 187, 313-328. https://doi.org/10.1016/S0025-3227(02)00384-5
  32. Yoo, D.-G., Park, S.-C., Sunwoo, D., and Oh, J.-H., (2003) Evolution and chronology of late pleistocene shelf-perched lowstand wedges in the Korea strait. Journal of Asian Earth Sciences, 22, 29-39. https://doi.org/10.1016/S1367-9120(03)00020-8
  33. Yoo, D.-G., Lee, G.-S., Kim, G.-Y., Kang, N.-K., Yi, B.-Y., Kim, Y.-J., Chun, J.-H., and Kong, G.-S. (2016) Seismic stratigraphy and depositional history of late Quaternary deposits in a tide-dominated setting: An example from the eastern Yellow Sea. Marine and Petroleum Geology, 73, 212-227. https://doi.org/10.1016/j.marpetgeo.2016.03.005
  34. Youn, J.-S., Lim, D.-I., Byun, J.-C., and Jung, H.-S. (2005) Discrimination of Sediment Provenance Using 87Sr/86Sr Ratios in the East China Sea. Journal of the Korean Society of Oceanography, 10, 92-99 (in Korean with English abstract).
  35. Youn, J.S. and Kim, T.-J. (2011) Geochemical composition and provenance of muddy shelf deposits in the East China Sea. Quaternary International, 230, 3-12. https://doi.org/10.1016/j.quaint.2009.11.001

Cited by

  1. 이어도와 주변 해역의 표층퇴적물 분포와 퇴적물 기원지 vol.41, pp.6, 2018, https://doi.org/10.5467/jkess.2020.41.6.588