• Title/Summary/Keyword: 현장발생토사

Search Result 139, Processing Time 0.025 seconds

Dynamic Characteristics of Liquidity Filling Materials Mixed with Reclaimed Ash (매립석탄회를 혼합한 유동성 충진재의 동적거동특성)

  • Chae, Deokho;Kim, Kyoungo;Shin, Hyunyoung;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2014
  • Recently, there have been various lifeline installations constructed in the underground space of urban area due to the effective use of land. For newly installed lifelines or the management of the installed lifelines, many construction activities of excavation and backfilling are observed. Around these area, there are possibilities of collapse or excessive settlement due to the leaking of the pipe or unsatisfactory compaction of backfill material. Besides, construction costs can be saved since the on-site soils are used. The application of this liquidity filling material is not only to the lifeline installation but also to underpin the foundation under the vibrating machinery. On the evaluation of the applicability of this method to this circumstance, the strength should be investigated against the static load from the machine load as well as the vibration load from the activation of the machine. In this study, the applicability of the liquidity fill material on the foundation under the vibrating machinery is assessed via uniaxial compression and resonant column tests. The liquidity filling material consisting of the on-site soils with loess and kaolinite are tested to investigate the static and dynamic characteristics. Furthermore, the applicability of the reclaimed ash categorized as an industrial waste is evaluated for the recycle of the waste to the construction materials. The experimental results show that the shear modulus and 7 day uniaxial strength of the liquidity filling material mixed with reclaimed ash show higher than those with the on-site soils. However, the damping ratio does not show any tendency on the mixed materials.

A study on slope protection works in cemetery establishment area ( I ) - The case of a public cemetery in Kangnung city - (묘지 조성사업지의 비탈면 보호공법에 관한 연구( I ) - 강릉시 시범 공설묘지 조성사업을 중심으로 -)

  • Chun, Kun-Woo;Yoo, Nam-Jae;Cha, Du-Song;Yi, Myong-Jong;Park, Wan-Geun;Han, Sang-Kyun
    • Journal of Forest and Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.17-33
    • /
    • 2000
  • The construction of a public cemetery in Kangnung city includes terraced graveyard with cutting or banking in mountain which has severe altitude differences with a slope of $30^{\circ}$. Therefore, there are scattered cutting and banking sections with vertical height more than 15m. Especially, if the slope failure or the loss of a graveyard happens after graveyard establishment due to surface flow and inflow around. it is difficult to repair, causing serious public censure. Accordingly, revegetation works were examined that need protection of slope. The specific content of the study was the selection of slopes requiring special care through blueprint and field investigation. the measurement of the physical property of slope and the situation of vegetative growth, the investigation of vegetation in slopes and the selection of vegetation. and the analysis of soil condition of slopes and the physical condition of slope sediment. On the basis of investigations some alternatives were proposed.

  • PDF

Dimensionless Discharge Formula of Parshall Flumes with Arbitrary Shape (임의형상 파샬플륨에 대한 무차원 유량공식 산정)

  • Kim, Sooyoung;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1777-1783
    • /
    • 2013
  • Parshall flume is more practical one of hydraulic structures for measuring flowrate in open channels and also has more advantages when the magnitude of flow velocity is relatively lower or much more sediments are brought from upstream. International Organization for Standardization (ISO) has suggested the empirical formulas standardized by the sizes and dimensions of Parshall flume. However, the related studies using the numerical simulations and experiments are relatively rare. Therefore, in this study, it was examined whether the numerical simulation was adequacy for reproducing the hydraulic characteristics of Parshall flume as much as laboratory experiments by comparing the results from numerical simulations and empirical equation. And for arbitrary Parshall flume, that is unlisted in the ISO standards due to environmental conditions, constructional difficulties etc, thus, the hydraulic experiments should be conducted to obtain the empirical formulas for it, the results from numerical simulations were compared with those of laboratory experiments. Consequently, it was convinced that the numerical simulation about Parshall flume was simulated appropriately instead of experimental approach. And the dimensionless discharge equation of arbitrary ones was suggested using the results of numerical simulations, and the equation was validated by comparing with laboratory experimental results showing the maximum relative error of 2.3%. If the actual topography, the shape of inlet and submerged flow, which is excluded in this study, were carefully considered, it would be possible to supply a simple empirical discharge equation based on numerical results. Also, it can replete hard works for hydraulic experiment being error-prone with complex procedures to a minimum of economic effort.

Characteristics of Sewage Flow in Sewer Pipes Deposited with Cohesive and Non-cohesive Solids (점착성 및 비점착성 고형물이 퇴적된 관로 내 하수흐름의 특성 조사)

  • Lee, Taehoon;Kang, Byongjun;Park, Kyoohong
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.153-159
    • /
    • 2020
  • In order to find out the condition of flow in sewer pipes, this study investigated the characteristics of tractive force of sewage flow estimated using actual measured values of water level, velocity, and flowrate in sewers located at uppermost portion in a treatment area during dry weather periods. When the scene of sewage flow was taken by CCTV after cohesive and non-cohesive solids (tofu and sand) were put on the sewer invert, it was found that the solids could be flushed without significant interruption. In sewer with slope of 0.00319, the frequency exceeding the minimum tractive force of sewage during a weekday was zero, while it was 10 per day with slope of 0.00603. During the week of the field observation, the event to exceed the minimum tractive force occurred once, suggesting that sewer odor would potentially increase. Maximum tractive force in sewer with steep slope was 2.9-3.1 N/㎡, but with gentle slope it decreased to 1.6-1.7N/㎡. It was also observed that the interval of time maintained below the criterion of minimum tractive force increased, during weekends compared to weekdays and for the sewage including non-cohesive particles which could enter combined sewers during a storm period. This study found that the sewer sediments formed by direct feces input into sewers, through sewer pipes which were designed meeting the standard sewer design criteria, could be flushed without staying as deposited solids state for a long time.

An analysis of hydraulic characteristics of stepped boulder fishway installed in mountain stream (산지하천에 설치된 계단식 전석 어도의 수리 특성 분석)

  • Kim, Ki Heung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.99-109
    • /
    • 2022
  • This study was intended to suggest the applicability of stepped boulder fishway using the concept of traditional boulder weir, focusing on the problems of existing concrete pool-and-weir fishways installed in mountain streams. To achieve this purpose, a stepped boulder fishway was designed and constructed as a pilot project in consideration of ascending capacity of the selected target fishes. Under the given discharge conditions, the hydraulic characteristics of the fishway were investigated in the field, and the characteristics and ascending capacity of the fishes were compared and analyzed. The fishway had a short length and steep slope, but the mean drops between each baffle were the range of 0.15 to 0.29 m, and this range satisfied the limit condition of about 0.40 m, which was in the limit of the drop that target fishes can ascend. The mean velocities of each baffle and pool were 0.82 to 0.87 m/sec and 0.13 to 0.24 m/sec. This result satisfied the conditions of burst speed (10 to 30 times of body length) and mean velocity of the resting pool (7 to 25% of burst speed) for target fishes. Since the bottom surface of the pool formed of boulders had a gentle reverse slope and rotational flow did not occur, the efficiency of fishway can be increased, and it will also be possible to solve the maintenance problem by flushing bed materials.

Long-Term Monitoring and Analysis of Changes in the Soil Layer on Dokdo (장기 모니터링을 통한 독도 자연사면의 토층 변화 분석)

  • Kyeong-Su Kim;Young-Suk Song;Dae-Seong Yun;Eunseok Bang
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.163-171
    • /
    • 2024
  • Changes in the soil layer on Dokdo are important both academically and with regard to sustainable conservation and utilization of the islands. Continuous investigation and observation are necessary, as the soil layer is essential to the growth of plants and, therefore, the islands' ecosystem. Such work was carried out for about 8 years using soil erosion measuring bars, which are durable and facilitate simple monitoring of changes in the soil layer. Each bar comprised a rod measuring 30~50 cm long and 1.5 cm in diameter, and the use of stainless steel afforded resistance to corrosion caused by sea breezes. Six measuring bars were installed in the soil layers of each of two islands, Dongdo and Seodo, and measurements were taken one to three times a year from 2014 to 2021. The field measurements indicate that soil was deposited on Dongdo but eroded on Seodo during the observation period. As the measuring bars on Dongdo were located in the central and lower parts of the island, the observed changes in the soil layer resulted mainly from sedimentation of material eroded by weathering or soil runoff from the upper part of the island. In contrast, the measurement locations on Seodo were located in the upper and central parts of the island, where soil erosion and runoff diminished the soil layer at the observation points.

Comparison of Terrain Changes in Debris Flow-Damaged Area and Morpho2DH Model Results (토석류 피해지의 지형 변화와 Morpho2DH 모형 결과의 비교 분석)

  • Jong-Seo Lee;Kwang-Youn Lee;Suk-Hee Yoon;Dong-Hyun Kim;Sang Ho Lee;Se-Wook Oh;Dong-Geun Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.3
    • /
    • pp.339-348
    • /
    • 2024
  • Debris flow is a typical type of mountainous sediment disaster that can cause widespread damage to both lives and property, making it essential to understand its behavioral characteristics for effective prevention. In this study, pre- and post-event Light Detection And Ranging(LiDAR) data from the Dosan-ri area in Bonghyeon-myeon, Yeongju-si, Gyeongsangbuk-do, Republic of Korea where debris flows occurred in 2023, were used to calculate the actual affected area and terrain change volume caused by the debris flow. These calculated values were then compared with those derived from the numeric simulation model, Morpho2DH, based on field surveys and laboratory investigation data. Additionally, the model's applicability was assessed by conducting cross-sectional elevation analyses based on the extent of the affected area and comparisons of the results. The findings indicate that the debris flow affected area and terrain change volume estimated by the Morpho2DH model were approximately 152% and 178% higher, respectively, compared to the LiDAR-based results. Pearson correlation analysis of the cross-sectional elevation changes showed a positive correlation, with Pearson Correlation Coefficients(PCC) of at least 0.65

A Study on Space Creation and Management Plan according to Characteristics by Type in Each Small-Scale Biotope in Seoul - Base on the Amphibian Habitats - (서울시 소규모 생물서식공간 유형별 특성에 따른 조성 및 관리방안 연구 - 양서류 서식지를 중심으로 -)

  • Park, Ha-Ju;Han, Bong-Ho;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.110-126
    • /
    • 2024
  • This study conducted a classification of small-scale biological habitats created in Seoul to analyze and synthesize location characteristics, habitat structure, biological habitat functions, and threat factors of representative sites, as well as derive creation and management problems according to the ecological characteristics. The aim was to suggest improvement measures and management items. Data collected through a field survey was used to categorize 39 locations, and 8 representative sites were selected by dividing them into location, water system, and size as classification criteria for typification. Due to the characteristics of each type, the site was created in an area where amphibian movement was disadvantageous due to low or disconnected connectivity with the hinterland forest, and the water supply was unstable in securing a constant flow and maintaining a constant water depth. The habitat structure has a small area, an artificial habitat structure that is unfavorable for amphibians, having the possibility of sediment inflow, and damage to the revetment area. The biological habitat function is a lack of wetland plants and the distribution of naturalized grasses, and threats include the establishment of hiking trails and decks in the surrounding area. Artificial disturbances occur adjacent to facilities. When creating habitats according to the characteristics of each type, it was necessary to review the possibility of an artificial water supply and introduce a water system with a continuous flow in order to connect the hinterland forest for amphibian movement and locate it in a place where water supply is possible. The habitat structure should be as large as possible, or several small-scale habitats should be connected to create a natural waterfront structure. In addition, additional wetland plants should be introduced to provide shelter for amphibians, and facilities such as walking paths should be installed in areas other than migration routes to prevent artificial disturbances. After construction, the management plan is to maintain various water depths for amphibians to inhabit and spawn, stabilize slopes due to sediment inflow, repair damage to revetments, and remove organic matter deposits to secure natural grasses and open water. Artificial management should be minimized. This study proposed improvement measures to improve the function of biological habitats through the analysis of problems with previously applied techniques, and based on this, in the future, small-scale biological habitat spaces suitable for the urban environment can be created for local governments that want to create small-scale biological habitat spaces, including Seoul City. It is significant in that it can provide management plans.

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.