DOI QR코드

DOI QR Code

Characteristics of Sewage Flow in Sewer Pipes Deposited with Cohesive and Non-cohesive Solids

점착성 및 비점착성 고형물이 퇴적된 관로 내 하수흐름의 특성 조사

  • Lee, Taehoon (Dept. of Civil and Environmental Engineering, Dankook University) ;
  • Kang, Byongjun (Environment Solution Partners Inc.) ;
  • Park, Kyoohong (Dept. of Civil and Environmental Engineering at Chung-Ang University)
  • 이태훈 (단국대학교 토목환경공학과) ;
  • 강병준 ((주)엔솔파트너스) ;
  • 박규홍 (중앙대학교 사회기반시스템공학부)
  • Received : 2020.05.30
  • Accepted : 2020.07.20
  • Published : 2020.07.28

Abstract

In order to find out the condition of flow in sewer pipes, this study investigated the characteristics of tractive force of sewage flow estimated using actual measured values of water level, velocity, and flowrate in sewers located at uppermost portion in a treatment area during dry weather periods. When the scene of sewage flow was taken by CCTV after cohesive and non-cohesive solids (tofu and sand) were put on the sewer invert, it was found that the solids could be flushed without significant interruption. In sewer with slope of 0.00319, the frequency exceeding the minimum tractive force of sewage during a weekday was zero, while it was 10 per day with slope of 0.00603. During the week of the field observation, the event to exceed the minimum tractive force occurred once, suggesting that sewer odor would potentially increase. Maximum tractive force in sewer with steep slope was 2.9-3.1 N/㎡, but with gentle slope it decreased to 1.6-1.7N/㎡. It was also observed that the interval of time maintained below the criterion of minimum tractive force increased, during weekends compared to weekdays and for the sewage including non-cohesive particles which could enter combined sewers during a storm period. This study found that the sewer sediments formed by direct feces input into sewers, through sewer pipes which were designed meeting the standard sewer design criteria, could be flushed without staying as deposited solids state for a long time.

본 연구에서는 실제 하수관로 내 흐름상태를 파악하기 위하여, 건기동안 처리구역 최상부에 위치한 관로의 수위, 유속, 유량의 값을 실제 측정하여 추정된 하수의 전단응력을 조사하였다. 수세분뇨 및 토사를 모사하기 위해 점착성 및 비점착성 고형물(두부와 모래)을 따로 또 함께 투입한 후 흐름의 상태를 촬영하였는데, 본 실험대상관로에서는 큰 방해없이 침전물이 하수와 함께 씻겨 내려가는 것을 관찰하였다. 경사가 0.00319인 관로에서 주중 하수의 최소전단응력을 초과하는 빈도는 0이었고 0.00603의 기울기의 경우 10회였다. 현장조사기간 중 최소전단력을 초과하는 이벤트는 1회 발생하여 하수도에서 악취가 증가될 가능성을 시사하였다. 경사가 가파른 관로의 최대전단응력은 2.9~3.1N/㎡이었지만, 완만한 경사에서는 1.6~1.7 N/㎡으로 감소하였다. 강우시 합류식 관로로 유입될 수 있는 비응집성 입자를 포함한 하수는 최소전단응력 기준 이하로 유지되는 시간 간격이 주중에 비해 주말동안 증가하였다. 설계기준에 따라 설계된 본 실험대상 관로에서는 수세분뇨가 직투입되어도 관로내 침전물이 오래 퇴적상태로 머물지 않고 하수와 함께 흘러갈 수 있음을 확인할 수 있었다.

Keywords

References

  1. H. M. Song et al. (2014). Development of Odor Control Technology and Policy Making in Sewer Pipe. Sejong : Korea Institute of Civil Engineering and Building Technology.
  2. Seoul Metropolitan Government. (2017). 2030 Sewer Rehabilitation Master Plan.
  3. K. H. Park, J. I. Oh, S. Y. Yoo, B. J. Kang, T. H. Lee, S. J. Kang & S. M. Kim. (2017). Study of Sewage Direct Input Plan in the Combined Sewer Zone. Korea Water and Wastewater Works Association.
  4. D. Butler & P. Clark. (1995). Sediment Management in Urban Drainage Catchments. London : Construction Industry Research & Information Assoc.
  5. C. H. Raths & R. F. McCauley. (1962). Deposition in a sanitary sewer. Wat. Wks. and Sewage, 109, 192-197.
  6. N. Vongvisessomjai, T. Tingsanchali & M. S. Babel. (2010). Non-deposition design criteria for sewers with part-full flow. Urban Water J., 7(1), 61-77. DOI : 10.1080/15730620903242824
  7. D. K. Lysne. (1969). Hydraulic design of self-cleaning sewage tunnels. J. SANIT. ENG. DIV. ASCE, 95(1), 17-36. https://doi.org/10.1061/JSEDAI.0000937
  8. ASCE and WPCF (1970). Design and Construction of Sanitary and Storm Sewers. American Society of Civil Engineers Manuals and Reports on Engineering Practices, No. 37.
  9. K. M. Yao. (1974). Sewer line design based on critical shear stress. J. Environ. Eng., 100(2), 507-520.
  10. CIRIA. (1986). Sediment Movement in Combined Sewerage and Storm-water Drainage Systems. Phase 1. Project Report.
  11. O. G. Lindholm (1984). Pollutant loads from combined sewer systems. In Proceedings of the 3rd International Conference on Urban storm drainage(pp. 1602-1616). Gothenburg, Sweden : Almqvist & Wiksell International.
  12. Scandiaconsult. (1974). Synopsis of Research Programme for Self-cleansing Sewers. Stockholm: Orrje.
  13. E. Macke. (1982). About sedimentation at low concentrations in partly filled pipes. Announcements, Institute of Hydraulic Engineering, Braunschweig University, Braunschweig, German.
  14. H. Brombach, S. Michelbach & C. Wohrle. (1992). Sedimentation and Remobilization Processes, Precipitation, Self-published Environmental and Fluid Technology. GmbH, Bad Mergentheim, German.