본 논문에서는 통화선물(일본 엔화와 독일 마르크화)에 대한 듀레이션 효과와 만기효과를 검증 하였다. 두 통화에 대한 1990-1994년까지의 현물과 선물의 주별자료를 가지고 분석한 결과 엔화와 마르크화의 통화선물계약에 대한 최소분산 헤지비율은 헤지기간(hedge duration)이 1주부터 5주까지 변함에 따라 증가하고 있으며 이러한 듀레이션효과는 계약만기가 가까워짐에 따라 헤지가 점점 제거되는 현상, 즉 만기효과에 의해서 영향을 받는 것으로 나타났다. 그리고 선형추세분석을 통해서 최소분산헤지비율이 베타헤지비율에 어떠한 추세로 접근하는 지를 알아보았다. 그 결과 듀레이션이 길어질수록 최소분산헤지비율이 증가하고, 계약만기에 가까워짐에 따라 최소분산헤지비율이 베타헤지비율, 1에 가까워지는 현상이 나타났다.
포트폴리오의 위험을 통제하거나 감소시키기 위해서 헤저들은 최적헤지비율을 추정하여야 하는데, 최적헤지비율의 추정치는 사용하는 모형에 따라 많은 차이를 보인다. 전통적인 회귀분석모형에 의하여 추정된 최적헤지비율은 시계열자료의 불안정성(nonstationary) 등으로 인하여 잘못될 가능성이 많으며, 잘못 추정된 헤지비율을 그대로 이용할 경우 현물포트폴리오의 시장위험을 최소화시키지 못하고 헤징비용을 증가시키는 결과를 초래한다. 시계열자료의 불안정성으로 말미암아 야기되는 문제점들을 개선할 수 있는 모형으로서 오차 수정모형(Error Correction Model : ECM)이 널리 이용되고 있다. 본 연구는 ECM을 사용하여 추정된 최적헤지비율과 전통적 회귀분석모형을 사용하여 추정한 최적헤지비율을 비교하여 어떤 모형으로 추정한 헤지비율이 더 정확한지를 평가하는데 목적을 두고 있다. 즉, 본 연구는 KOSPI 200 현 선물지수 자료를 대상으로 ECM과 전통적 회귀분석모형에 의한 최적헤지비율을 추정하고 각 모형의 설명력과 예측력을 비교하고자 한다. 실증분석 결과, KOSPI 200 현물지수와 KOSPI 200 선물지수간에는 공적분 관계가 존재하며, ECM과 전통적 회귀분석모형을 이용하여 추정한 최적헤지비율의 크기는 서로 다르며, ECM을 이용할 때 모형의 설명력이 조금 더 높게 나타났으며, 예측력도 ECM이 좀더 우월한 것으로 나타났다.
We examine hedge strategies that use Won-dollar futures to hedge the price risk of the Won-dollar exchange rate. We employ the naive hedge model, minimum variance hedge model and bivariate ECT-ARCH(1) model as hedge instruments, and analyze their hedge performances. The sample period covers from January 2, 2001 to December 31, 2002 with sub-samples such as daily, weekly, bi-weekly prices of the Won-dollar futures and cash. The important findings may be summarized as follows. First, there is no significant difference in hedge ratio between the risk minimum variance model and bivariate ECT-ARCH(1) model that controls for the cointegration relationship of the Won-dollar futures and cash. Second, hedge performance of the naive model and minimum variance model with constant hedge ratios is not far behind that of bivariate ECT-ARCH(1) model with time-varying hedge ratios. This results imply that investors are encouraged to use the minimum variance hedge model to hedge Won-dollar exchange rate with Won-dollar futures. Third, hedge performance and effectiveness of each model is also analyzed with respect to hedge period appear to be greater over long than over the short period. This evidence supports the hypothesis that futures prices would have more time to respond to the greater cash price changes over the longer holding period, leading to an improved hedge performance.
2000년 7월부터 채권시가평가의 실행으로 채권운용자들도 채권포트폴리오의 위험을 채권선물을 이용하여 통제하거나 감소시키기 위해 헤지를 하여야 한다. 이때 헤지비율을 추정하는 방법으로는 전통적 회귀분석모형, 백터오차수정모형(Vector Error Correction Model : VECM)과 VAR모형(Vector AutoRegressive Model)이 있다. 전통적인 회귀분석모형에 의하여 추정된 헤지비율은 시계열자료의 불안정성(nonstationary) 등으로 인하여 잘못 추정될 가능성이 있어 면밀한 검토와 분석 후 사용하여야 한다. 시계열자료의 불안정성으로 말미암아 야기되는 문제점들을 개선할 수 있는 모형으로서 VECM과 VAR모형이 널리 이용되고 있다. 따라서 본 연구는 VECM과 VAR모형을 사용하여 추정된 헤지비율과 전통적 회귀분석모형을 사용하여 추정한 헤지비율을 비교하여 어떤 모형으로 추정한 헤지비율이 더 정확한지를 평가하는데 목적을 두고 있다. 즉, 본 연구는 KTB 현 선물의 헤징에 대한 연구로 2000년 1월 4일부터 2001년 7월 27일까지 385일간의 KTB 현 선물 자료와 불룸버그 국채지수를 대상으로 VECM 및 VAR모형과 전통적 회귀분석모형에 의한 헤지비율을 추정하고 각 모형의 설명력과 예측력을 비교하고자 한다. 이 연구의 실증분석 결과, KTB 현물가격과 KTB 선물가격간, 블룸버그 국채지수와 KTB 선물가격간에는 공적분 관계가 존재하며, VECM 및 VAR와 전통적 회귀분석모형을 이용하여 추정한 최적헤지비율의 크기는 대동소이(大同小異)하며, 전통적 회귀분석방법을 이용하는 것이 VECM과 VAR모형을 이용할 때 보다 설명력과 예측력이 우월한 것으로 나타났다.
본 연구에서는 여러 계량 모형을 이용하여 계산한 헤지 비율의 성과를 비교하였다. 특히 헤지 비율을 추정하기 위하여 분수 공적분 오차 수정 모형을 이용하였다. KOSPI200 현물과 선물 지수를 이용하여 검증한 결과 현물, 선물 지수는 1차 적분된 시계열이며 베이시스는 분수 적분된 시계열이었다. 따라서 현물과 선물 지수는 분수 공적분된 시계열이었다. 최소 분산 헤지 비율을 최적 헤지 비율로 하여 성과를 측정한 결과 다음과 같은 결과를 얻었다. 헤지 성과는 GARCH 항이 있는 모형이 없는 모형에 비해 크게 나타나며 각 모형에서 고려하고 있는 정보 집합의 크기가 큰 순서인 FIEC, EC, VAR, OLS 순으로 헤지 성과는 크게 나타나고 있다. 그러나 OLS 방법에 의한 헤지에 의해서도 수익률 변동의 많은 부분이 사라져, 다른 모형들은 OLS 모형과 비교하여 추가적인 분산 감소 효과는 크지 않았다.
We analyze the optimal hedge ratio and hedge effectiveness with different periodic times between spot and futures on EUA and CER based on EU-ETS. The Main finding are as follows. The first, hedging model which considers the time-varying variance is not more accurate than non-time-varying hedging models. The second, optimal hedge ratios are different even though hedge effectiveness is similar for the hedging purpose. The third, hedge effectiveness has uncertainty if hedge period is short. In case of EUA it needs to over 6 weeks and CER needs to over 7 weeks. The fourth, cross hedge with CER futures is not suitable for profit ratios.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.9
no.2
/
pp.15-21
/
2014
The long memory properties of the hedge ratio for stock and futures have not been systematically investigated by the extant literature. To investigate hedge ratio' long memory, this paper employs a data set including KOSPI200 and S&P500. Coakley, Dollery, and Kellard(2008) employ a data set including a stock index and commodities foreign exchange, and suggested the S&P500 to be a fractionally integrated process. This paper firstly estimates hedge ratios with two dynamic models, BEKK(Bollerslev, Engle, Kroner, and Kraft) and diagonal-BEKK, and tests the long memory of hedge ratios with Geweke and Porter-Hudak(1983)(henceforth GPH) and Lo's modified rescaled adjusted range test by Lo(1991). In empirical results, two hedge ratios based on KOSPI200 and S&P500 show considerably significant long memory behaviours. Thus, such results show the hedge ratios to be stationary and strongly reject the random walk hypothesis on hedge ratios, which violates the efficient market hypothesis.
본 논문에서는 KOSPI 200 주가지수 선물의 만기효과와 베이시스의 행태를 체계적으로 헤지 의사결정에 반영하기 위한 몇 가지 방법을 실증분석하였다. 우선 베이시스의 동태적 운동형태를 명시적으로 설정하지 않고 통계적인 방법을 통하여 헤지해제시점이 선물만기에 접근함에 따라 베이시스가 변동되는 양상을 반영한 헤지비율을 산출한다. 그 다음에는 헤지기간 전체에 걸친 베이시스의 운동형태를 명시적으로 설정하여 이에 입각한 헤지비율을 계산한다. 명시적인 베이시스의 운동형태는 비확률적인 과정과 확률적인 과정으로 다시 구분하고, 이 각각에 입각하여 최적헤지활동을 결정한다. 모든 헤지활동은 가장 최근까지의 정보를 이용하여 사전적으로 미래 헤지기간에 대한 의사결정을 하게 된다. 그러한 헤지활동의 사후적인 결과는 베이시스 행태를 별도로 고려하지 않고 단순선형회귀분석만을 이용하여 산출된 헤지성과와 비교되고, 변동성 감소 및 손실감소의 측면에서 각 접근방법이 가지는 특징 및 효율성을 평가한다. 실증 분석 결과, 헤지의 성과를 제고하기 위하여 선물의 만기효과와 베이시스의 행태변화를 체계적으로 반영한 세 가지의 시도 중 어느 것도 위험-수익의 2차원적인 비교에서 베이시스의 행태변화를 명시적으로 반영하지 않은 전통적 단순회귀분석을 압도하지 못하였다.
This paper tests cross hedging performance of the KOSPI 200 stock index futures to hedge the downside risk of the KOSPI, KOSPI 200 and KOSDAQ50 spot market. For this purpose we introduce the minimum variance hedge model, bivariate GARCH(1,1) and EGARCH(1,1) model as hedge models. The main results are as follows; First, we find that the direct hedge performance of KOSPI 200 index futures is better than those of indirect hedge performance. second, in case or cross hedge performance the hedge effect of KOSPI 200 stock index futures market against KOSPI 200 stock index spot market is relatively better than those of KOSPI 200 index futures against KOSPI and KOSDAQ spot position. Third, for the out-sample, hedging effectiveness of the risk-minimization with constant hedge ratios is higher than those of the time varying bivariate GARCH(1,1) and EGARCH(1,1) model. In conclusion, investors are encouraged to use simple risk-minimization model rather than the time varying hedge models like GARCH and EGARCH model to hedge the position of the Korean stock index cash markets.
평균-분산 기준보다 우수한 기준이라고 할 수 있는 평균-지니 기준은 위험회피 정도를 고려할 수 있는 확장된 평균-지니 기준으로 확장되면서 선물시장에서의 헤지모형에 도입되어 분포특성과는 무관하게 헤지비율의 특성을 분석할 수 있다는 측면에서 관심의 대상이 되었다. 그러나 확장된 평균-지니 기준을 실제로 적용하기 위해서는 확장된 지니평차를 계산가능한 형태로 변환해야 하는 문제와, 수익률의 누적확률 값을 추정해야 하는 문제점이 있다. 누적확률 값을 추정하는 방법으로 수익률의 분포함수와는 관계없이 순위에 의한 방법이 이용되었다. 본 연구에서는 실제로 분포의 확률밀도함수를 이용해서 누적확률을 계산하는 경우와 순위를 이용해 추정하는 방법을 비교함으로써 순위방법의 정확성을 평가하고자 하였으며, 확장된 지니평차를 실제로 계산하는 데 있어서의 문제점도 검토하였다. 이러한 검토를 통해 확장된 평균-지니 기준을 헤지 모형에 도입하여 활용하는 것의 현실적 유용성을 종합적으로 평가하고자 하였다. 분석결과 확장된 지니평차의 계산을 위해 변형한 식에 대한 정밀한 검토가 필요하다는 점과, 확장된 지니평차를 헤지모형에 적용하기 위해서는 누적확률을 정확하게 계산하는 문제의 해결이 선행되어야 한다는 점을 밝힐 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.