• Title/Summary/Keyword: 허브클러치

Search Result 13, Processing Time 0.029 seconds

A Experimental Study of Automobile Hub Clutch used Flow Control Forming Techniques (유동제어 성형기술을 이용한 자동차 허브클러치의 실험적 연구)

  • 박종남;계중읍;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.142-149
    • /
    • 2002
  • In this paper, the metal forming process is caused of rise of the unit cost of production in increase of the lead-time and cost because of manufacturing final product through a few the number of processes. Flow control complex forming is proposed to put into formulation in order to apply cold forging from conventional approximate similarity theory, and the forming loads of the real material(AISI 1008) can be calculated by put at the new similarity formula the load by plasticine model material experiment through hub clutch. In order to reduce lead-time and cost the technology is used to manufacture with lower die of this product. By the application synthetic resin as the raw material, it is have the merit such short lead-time, low cost, good surface finish etc., as compared with the machine work.

Numerical Approach to Optimize Piercing Punch and Die Shape in Hub Clutch Product (허브클러치 제품의 피어싱 펀치 및 금형 형상 최적화를 위한 수치접근법)

  • Gu, Bon-Joon;Hong, Seok-Moo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.517-524
    • /
    • 2019
  • The overdrive hub clutch is attached to a 6-speed automatic transmission to reduce fuel consumption by using the additional power of the engine. This paper proposes a means to minimize the load and roll-over ratio on the punch during the piercing process for the overdrive hub clutch product. Die clearance, shear angle, and friction coefficient, which can affect the load and roll-over ratio of the punch during processing, were set as the design variables. Sensitivity analysis was also conducted to determine the influence of each design variable on the punch load and roll-over ratio. As a result, shear angle, friction coefficient and die clearance were found to be sensitive to load and roll-over ratio. The punch load and roll-over ratio were set as the objective function and the equation of each design variable and objective function was derives using the Response Surface Method. Finally, the optimal value of the design variables was derived using the Response Surface Method. Application of this model to finite element analysis resulted in 22.14% improvement in the roll-over ratio of the punch load and material.

Optimization of Pre-form for Manufacturing of Automobile Drum Clutch Hub Products Using Taguchi Method (다구찌기법을 이용한 자동차용 드럼 클러치 허브 제조를 위한 예비성형체의 최적화)

  • Kim, Seung-Gyu;Park, Young-Chul;Park, Joon-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.101-108
    • /
    • 2010
  • The drum clutch investigated in this study is formed in 5 forming steps, which are 1st deep drawing, 2nd deep drawing, restriking, embossing, and $Grob^{TM}$ processes. Dimensional accuracy of the final products greatly depends upon how much more accurate pre-form is manufactured in the previous forming processes before the $Grob^{TM}$ process. The deep drawing, restriking and embossing processes in which the pre-form is formed are very important and decisive steps. Thus in some cases, excessive strain by these operations causes dimensional inaccuracy and cracks initiated from the base and wall of the product. Process variables such as the punch shapes both of 1st and 2nd deep drawing, and punch angle were selected to evaluate the deformation characteristics. The optimum parameters were determined from forming simulations using commercial FEM codes, DEFORM and Tauchi method, specifically developed for metal forming simulation. Finally, experiments for the whole drum clutch forming processes were carried out to verify the optimized forming parameters and the analytical results.

Process Design of Cold Forged Hub by Flow Control Forming Technique (유동제어 성형기술을 이용한 허브제품의 냉간단조 공정설계)

  • Park, Jong-Nam;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.86-95
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in order to reduce the number of preforming and the machining for the cold forged product with complex geometry. This technology is the combined forming that consists of bulk and sheet forming with double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub model that is part of air conditioner clutch. The purpose of this study is to investigate the material now of hub through the relative-velocity control of punch and mandrel using the flow control forming technique.