In this paper, we propose a method to apply artificial intelligence technology efficiently to integrated security control technology. In other words, by applying machine learning learning to artificial intelligence based on big data collected in integrated security control system, cyber attacks are detected and appropriately responded. As technology develops, many large capacity Is limited to analyzing individual logs. The analysis method should also be applied to the integrated security control more quickly because it needs to correlate the logs of various heterogeneous security devices rather than one log. We have newly proposed an integrated security service model based on artificial intelligence, which analyzes and responds to these behaviors gradually evolves and matures through effective learning methods. We sought a solution to the key problems expected in the proposed model. And we developed a learning method based on normal behavior based learning model to strengthen the response ability against unidentified abnormal behavior threat. In addition, future research directions for security management that can efficiently support analysis and correspondence of security personnel through proposed security service model are suggested.
Journal of the Korea Institute of Information Security & Cryptology
/
v.28
no.2
/
pp.357-367
/
2018
As information technology of modern society develops, various malicious codes with the purpose of seizing or destroying important system information are developing together. Among them, ransomware is a typical malicious code that prevents access to user's resources. Although researches on detecting ransomware performing encryption have been conducted a lot in recent years, no additional methods have been proposed to recover damaged files after an attack. Also, because the similarity comparison technique was used without considering the repeated encryption, it is highly likely to be recognized as a normal behavior. Therefore, this paper implements a filter driver to control the file system and performs a similarity comparison method that is verified based on the analysis of the encryption pattern of the ransomware. We propose a system to detect the malicious process of the accessed process and recover the damaged file based on the cloud storage.
Kim, Seo-Young;Jeong, Kyung-Hwa;Hwang, Yuna;Nyang, Dae-Hun
Annual Conference of KIPS
/
2021.05a
/
pp.132-135
/
2021
최근 네트워크의 확장으로 인한 공격 벡터의 증가로 외부자뿐 아니라 내부자를 경계해야 할 필요성이 증가함에 따라, 이를 다룬 보안 모델인 제로트러스트 모델이 주목받고 있다. 이 논문에서는 reverse proxy 와 사용자 패턴 인식 AI 를 이용한 제로트러스트 아키텍처를 제시하며 제로트러스트의 구현 가능성을 보이고, 새롭고 효율적인 전처리 과정을 통해 효과적으로 사용자를 인증할 수 있음을 제시한다. 이를 위해 사용자별로 마우스 사용 패턴, 리소스 사용 패턴을 인식하는 딥러닝 모델을 설계하였다. 끝으로 제로트러스트 모델에서 사용자 패턴 인식의 활용 가능성과 확장성을 보인다.
Proceedings of the Korean Information Science Society Conference
/
2007.10d
/
pp.112-117
/
2007
사이버 침해란 정보시스템의 취약한 부분을 공격하여 시스템 내부에 침입하거나 시스템을 마비/파괴하는 등의 사고를 유발하는 모든 행위를 말한다. 이러한 사이버 침해의 피해를 줄이기 위해 국내외 많은 연구 기관과 업체에서는 침입탐지시스템과 같은 정보보호 기술을 연구 개발하여 상용화하고 있다. 그러나 기존의 정보보호 기술은 이미 발생한 침해를 탐지하여 피해의 확산을 막는 데만 한정적으로 사용되고, 침해의 발생 가능성을 예측하지는 못하기 때문에 점차 첨단화, 다양화되고 있는 사이버 침해에 대응하기 힘들다는 문제점을 갖는다. 본 논문에서는 보안 취약점을 이용한 사이버 침해를 대상으로 전문가 설문을 통해 사이버 침해의 발생 가능성을 예측하는 방법을 제안하고, 이를 위한 사이버 침해 예측 항목을 추출하였다. 예측 항목 추출은 3 단계로 구성되며, 첫 번째 단계에서는 기존 연구와 사례 분석을 통해 예측 항목의 계층 구조를 생성한다. 두 번째 단계에서는 첫 번째 단계를 통해 생성된 예측 항목들을 델파이 방법을 통해 개선하여 최적의 예측 항목을 결정한다. 마지막 단계에서는 각 항목들에 대한 쌍대 비교 설문을 진행하여 항목 간 가중치를 추출한다.
Journal of the Korea Society of Computer and Information
/
v.25
no.11
/
pp.131-138
/
2020
Malware is generally recognized as a computer program that penetrates another computer system and causes malicious behavior intended by the developer. In cyberspace, it is also used as a cyber weapon to attack adversary. The most important factor that a malware must have as a cyber weapon is that it must achieve its intended purpose before being detected by the other's detection system. It requires a lot of time and expertise to create a single malware to avoid the other's detection system. We propose the framework that automatically generates variant malware when a binary code type malware is input using the DCM technique. In this framework, the sample malware was automatically converted into variant malware, and it was confirmed that this variant malware was not detected in the signature-based malware detection system.
Kim, Kyu-Il;Choi, Sang-Soo;Park, Hark-Soo;Ko, Sang-Jun;Song, Jung-Suk
Journal of the Korea Institute of Information Security & Cryptology
/
v.24
no.5
/
pp.871-883
/
2014
New types of attacks that mainly compromise the public, portal and financial websites for the purpose of economic profit or national confusion are being emerged and evolved. In addition, in case of 'drive by download' attack, if a host just visits the compromised websites, then the host is infected by a malware. Website falsification detection system is one of the most powerful solutions to cope with such cyber threats that try to attack the websites. Many domestic CERTs including NCSC (National Cyber Security Center) that carry out security monitoring and response service deploy it into the target organizations. However, the existing techniques for the website falsification detection system have practical problems in that their time complexity is high and the detection accuracy is not high. In this paper, we propose website falsification detection system based on image and code analysis for improving the performance of the security monitoring and response service in CERTs. The proposed system focuses on improvement of the accuracy as well as the rapidity in detecting falsification of the target websites.
Park, Jinhak;Kwon, Taewoong;Lee, Younsu;Choi, Sangsoo;Song, Jungsuk
Journal of the Korea Institute of Information Security & Cryptology
/
v.27
no.4
/
pp.821-830
/
2017
The internet is an important infra resource that it controls the economy and society of our country. Also, it is providing convenience and efficiency of the everyday life. But, a case of various are occurred through an using vulnerability of an internet infra resource. Recently various attacks of unknown to the user are an increasing trend. Also, currently system of security control is focussing on patterns for detecting attacks. However, internet threats are consistently increasing by intelligent and advanced various attacks. In recent, the darknet is received attention to research for detecting unknown attacks. Since the darknet means a set of unused IP addresses, no real systems connected to the darknet. In this paper, we proposed an algorithm for finding black IPs through collected the darknet traffic based on a statistics data of port information. The proposed method prepared 8,192 darknet space and collected the darknet traffic during 3 months. It collected total 827,254,121 during 3 months of 2016. Applied results of the proposed algorithm, black IPs are June 19, July 21, and August 17. In this paper, results by analysis identify to detect frequency of black IPs and find new black IPs of caused potential cyber threats.
Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.2
/
pp.267-280
/
2023
With development of computing and communications technologies, IoT environments based on high-speed networks have been extending rapidly. Especially, from home to an office or a factory, applications of IoT devices with sensing environment and performing computations are increasing. Unfortunately, IoT devices which have limited hardware resources can be vulnerable to cyber attacks. Hence, there is a concern that an IoT botnet can give rise to information leakage as a national cyber security crisis arising from abuse as a malicious waypoint or propagation through connected networks. In order to response in advance from unknown cyber threats in IoT networks, in this paper, We firstly define four types of We firstly define four types of characteristics by analyzing darknet traffic accessed from an IoT botnet. Using the characteristic, a suspicious IP address is filtered quickly. Secondly, the filtered address is identified by Cyber Threat Intelligence (CTI) or Open Source INTelligence (OSINT) in terms of an unknown suspicious host. The identified IP address is finally fingerprinted to determine whether the IP is a malicious host or not. To verify a validation of the proposed method, we apply to a Darknet on real-world SOC. As a result, about 1,000 hosts who are detected and blocked preemptively by the proposed method are confirmed as real IoT botnets.
KIPS Transactions on Software and Data Engineering
/
v.10
no.11
/
pp.449-456
/
2021
An intrusion detection system is a technology that detects abnormal behaviors that violate security, and detects abnormal operations and prevents system attacks. Existing intrusion detection systems have been designed using statistical analysis or anomaly detection techniques for traffic patterns, but modern systems generate a variety of traffic different from existing systems due to rapidly growing technologies, so the existing methods have limitations. In order to overcome this limitation, study on intrusion detection methods applying various machine learning techniques is being actively conducted. In this study, a comparative study was conducted on data preprocessing techniques that can improve the accuracy of anomaly detection using NGIDS-DS (Next Generation IDS Database) generated by simulation equipment for traffic in various network environments. Padding and sliding window were used as data preprocessing, and an oversampling technique with Adversarial Auto-Encoder (AAE) was applied to solve the problem of imbalance between the normal data rate and the abnormal data rate. In addition, the performance improvement of detection accuracy was confirmed by using Skip-gram among the Word2Vec techniques that can extract feature vectors of preprocessed sequence data. PCA-SVM and GRU were used as models for comparative experiments, and the experimental results showed better performance when sliding window, skip-gram, AAE, and GRU were applied.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.8
no.5
/
pp.303-314
/
2018
In the past few years, government agencies and corporations have succumbed to stealthy, tailored cyberattacks designed to exploit vulnerabilities, disrupt operations and steal valuable information. Security Information and Event Management (SIEM) is useful tool for cyberattacks. SIEM solutions are available in the market but they are too expensive and difficult to use. Then we implemented basic SIEM functions to research and development for future security solutions. We focus on collection, aggregation and analysis of real-time logs from host. This tool allows parsing and search of log data for forensics. Beyond just log management it uses intrusion detection and prioritize of security events inform and support alerting to user. We select Elastic Stack to process and visualization of these security informations. Elastic Stack is a very useful tool for finding information from large data, identifying correlations and creating rich visualizations for monitoring. We suggested using vulnerability check results on our SIEM. We have attacked to the host and got real time user activity for monitoring, alerting and security auditing based this security information management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.