• Title/Summary/Keyword: 해안면

Search Result 593, Processing Time 0.026 seconds

Interpolation and Reconstruction of the Holocene Sea-levels Using Inverse Fractal Interpolation functions (프랙탈 내삽함수 역산법을 이용한 홀로세 해수면의 내삽 및 재구성)

  • CHUNG, SANG YONG;KIM, DAE CHOUL;YI, HI-IL
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.228-238
    • /
    • 1994
  • The change of sea-level is a good indicator of the change of climate during the Quaternary period. The sea-levels in the world have been changing very irregularly during that time. The pattern of the Quaternary sea-level change was assumed to be a stochastic fractal in this study. We measured fractal dimensions of the Holocene sea-levels of the Hudson river estuary and the Delaware coast. A box counting method gave almost the same values. i.e., D=1.358 for the Hudson sea-level changes and D+1.346 for the Delaware sea-level changes. the ability of the inverse method of fractal interposea-levels. IFIF reproduction the realistic sea-levels for the both of them. The delaware sea-level data made less statistical errors for the interpolation of IFIF than the Hudson and the Delaware sea-levels. IFIF reproduction the realistic sea-levels for the both of them. The Delaware sea-level data made less statistical errors for the interpolation of IFIF than the Hudson sea-level data. This suggests that the Delaware sea-level data are more reliable than the Hudson sea-level data was calculated from the fractal dimension of the Delaware sea-level data. Fractal interpolation functions (FIF) was used to reconstruct the peleosea-levels of the Korean coasts and the Atlantic Ocean coasts of the United States. The Korean Peleosea-level change generacted by FIF is different from the peleosea-level change of the eastern U.S.. The Korean peleosea-levels are much higher than the eastern U.S. Paleosea-levels, comparing to each other from the present to 8,000 BP.

  • PDF

Economic Impacts of Sea-level Rise and Optimal Protection on Jeju Island (해수면 상승에 따른 경제적 피해 비용 및 최적 해안 방어 비율 추정 -제주도를 대상으로-)

  • Min, Dongki;Cho, Kwangwoo
    • Environmental and Resource Economics Review
    • /
    • v.22 no.1
    • /
    • pp.127-145
    • /
    • 2013
  • This study estimates the economic impact of sea-level rise on Jeju island and suggests the optimal protection level based on the FUND model. There exist a number of studies that estimate the impacts of sea-level rise on global scale, but their results are of limited use for local scale such as Korea. Therefore, this study applies some specific indicators and data of Korea into to FUND model for deriving site specific estimates. The results show that 2.01%~2.25% of land could be inundated by sea-level rise until 2100. The value of affected land is about 6.4%~7.2% of total land value. The discrepancy between the figures indicates that the area affected by sea-level rise is much more valuable than the rest of Jeju island. The optimal protection level in Jeju city is higher than that in Seguipo city, even though the coastal length of Jeju city is longer than that of Seguipo. This is due to the fact that the economic value of Jeju city is much higher than that of Seoguipo city.

Study on Modeling Procedure of Hydraulic Experiment of Coastal Structure Scour at Sea-Bed Using Fluid-structure Interaction (유체-구조 상호작용을 고려한 해안구조물의 해저면 세굴에 대한 조파실험 해석 기법 연구)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.49-53
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

Numerical Analysis of Long-period Harbor Resonance (항만내의 장주기파 응답에 관한 수치해석)

  • 정원무;편종근;정신택;채장원
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1991.07a
    • /
    • pp.11-17
    • /
    • 1991
  • 현재 사용중인 대부분의 항만부진동 예측을 위한 수치모형은 Lee(1969), Chen and Mei(1974)의 경우와 같이 Helmholtz 방정식을 사용하고 있으나 여기에는 경계면에서의 에너지 흡수 및 해저면 마찰에 의한 에너지 감쇠가 제외되었다. 그러나, 항내 파랑응답 문제에서는 경계면에서의 흡수와 해저면 마찰에 의한 에너지 감쇠가 중요한 역할을 하는 것으로 보고되고 있다(Ganaba et al., 1982).(중략)

  • PDF

Rising Tendencies of both Tidal Elevation and Surge Level at the Southwestern Coast (서남해안의 해수면 상승과 해일고 증가 경향)

  • Kang, Ju-Whan;Park, Seon-Jung;Park, Min-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.14-24
    • /
    • 2008
  • Recently, rising tendency of high water level is detected at southwestern coast. The result of harmonic analysis shows increasing trend of mean sea level, decreasing trend of the amplitudes of semi-diurnal tidal constituents, and increase of Sa tidal constituent, therefore, additional increase of high water level at Summer season. It shows also that maximum surge level has increased greatly, according to the frequent visit of big typhoon such as RUSA and MAEMI. Considering the correspondence of Sa and typhoon period, namely July${\sim}$September, extraordinary high water level would be more probable. Especially, Mokpo and Jeju would be considered to have many chances of extraordinary high water level in the future.

Estimation of the Interface of Seawater Intrusion in a Coastal Aquifer System with SHARP Model (SHARP 모델을 이용한 해안 대수층의 해수침투 경계면 추정)

  • 심병완;정상용
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2003
  • SHARP numerical model was used to estimate the interface, ranges and seasonal variations of seawater intrusion. The interface obtained from the SHARP model represented more sensitive to seasonal variations than that estimated from the monitoring wells. When TDS and groundwater velocity vector distributions generated by SUTRA simulations are compared to the interfaces obtained from SHARP simulation, the difference of the range on seawater intrusion is less than 50 m, and the range of seawater intrusion from seasonal variations has the difference of about 12 m. These differences are small for the numerical simulation of the coastal aquifer at regional scale. Therefore, the model with sharp interface is very useful to estimate the interface at this study site, where is regional aquifer system in the scale of seawater infusion. However the SHARP model have some limitations in simulating the range of seawater intrusion, when the hydrodynamic dispersion is significant for seawater intrusion at local aquifer system.

Reliability Analysis of Sloped-Coastal Structures with Sea-Level Rise (해수면 상승에 따른 경사식 해안 구조물의 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.42-48
    • /
    • 2008
  • A system of risk assessment is developed by using the reliability analysis which evaluate quantitatively both stability and performance of sloped-coastal structures according to several scenarios of sea-level rise. By using reliability functions on armor unit and run-up, the probabilities of failure can be straightforwardly calculated with respect to several design parameters such as nominal diameter of armor unit, slope of coastal structure, and freeboard height. By comparing the results before and after sea-level rise, it may be possible to exactly assess some ranges of decrease of stability and performance of sloped-coastal structure with respect to sea-level rise. Therefore, it can also be possible to make a decision which parameters should be repaired or strengthened in order to maintain the original stability and performance of sloped-coastal structures. Finally, The present results may be useful for designing some kinds of new sloped-coastal structures including the effect of sea-level rise.

Validation of Fresh-Saltwater Sharp-Interface Model Using Freshwater Lens Hydraulic Experiment (담수렌즈 수리모형을 이용한 담수-염수 경계면 수치모델의 검정)

  • Hong, Sung Hun;Park, Namsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.263-269
    • /
    • 2006
  • An optimization model was developed for groundwater development and management in coastal areas. The optimization model consists of coastal groundwater flow model and optimization techniques. The objective of this work is to validate sharp-interface model which is one of major components of the optimization model. A laboratory experimental model is built to simulate freshwater lens, i.e., layer of freshwater floating on top of saltwater, phenomena. Experimental results for the position of fresh-saltwater sharp-interface and the salinity in well are compared with numerical results. Average ratio of relative error is estimated approximately between 2.91% and 4.39%. And the numerical results are in good agreement with the laboratory results of water quality in well in addition to the position of sharp-interface. Accordingly the evaluation of coastal groundwater flow using sharp-interface model can produce reasonable results.

Analytical Performance Comparison of Scour Protection of Rubble Mound Structure Shape using Simulation (해석적 모의조파실험을 이용한 해안사석구조물 형상에 따른 해저면 세굴 방지 성능 비교)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.117-122
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

Properties of Deposits and Geomorphic Formative Ages on Marine Terraces in Gwangyang Bay, South Sea of Korea (광양만 일대 해안단구의 퇴적물 특성과 지형 형성시기)

  • Lee Gwang-Ryul;Park Chung-Sun
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.3 s.114
    • /
    • pp.346-360
    • /
    • 2006
  • In order to analyze synthetically geomorphological processes of marine terrace in Korea, this study deals with the distribution of marine terraces, stratification of sedimentary layers, physicochemical properties of deposits, and formative ages of marine terraces based on OSL(Optically Stimulated Luminescence) absolute age at coastal area of Gwangyang Bay in central part of the South Coast. As a result of comparison with physicochemical properties on diverse geomorphic materials, there is not enough distinction in them, because of recycling and mixing of materials at Gwangyang Bay having a geomorphic closure. In Gwangyang bay coast, marine terraces are discovered at least 3 levels and have a small area. Formative age of 1st Terrace, as the lowest level ranging in $10{\sim}13m$ above the sea level, is estimated at MIS(Marine Isotope Oxygen Stage) 5a, based on OSL age dating and properties of deposits. Uplifting rate is calculated at 0.141m/ka in Gwangyang bay coast. For application to this rate, 2nd terrace($18{\sim}22m$) is estimated at MIS 5e, 3rd terrace($27{\sim}32m$) is latter part of MIS 7. Consequently, we might conclude that uplifting and geomorphic process of marine terrace in South Coast is similar to East Coast during the Late Pleistocene in Korea.