• 제목/요약/키워드: 해석적 연구

Search Result 22,730, Processing Time 0.078 seconds

Experiment and Numerical Investigation on Material Damping for Steel Fiber Reinforced Concrete Beams (강섬유 보강 철근콘크리트 보의 재료적 에너지감쇠에 대한 실험 및 수치해석적 연구)

  • 강보순;정영수;이우현
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.139-149
    • /
    • 1998
  • 동적하중하에서 강섬유보강 콘크리트(SFRC)는 유연도 및 균열억제에서 우수한 재료로서 최근에 각종 구조물에 널리 사용되었으며, 특히 내진설계를 위한 강섬유보강 콘크리트 의 재료적 감쇠에 관한 규명이 절실히 요구되고 있다. 본 연구는 강섬유보강 콘크리트(SFRC)보의 재료적 감쇠효과증진을 실험적 및 수치해석적 방법으로 규명하는 데에 목적이 있으며, 일반적으로 강섬유 보강콘크리트(SFRC)보의 감쇠거동은 인장철근비, 강섬유의 혼입량과 형태, 콘크리트의 강도 그리고 응력의 크기에 좌우된다. 강섬유보강 콘크리트보의 감쇠비는 보의 균열상태 변화에따른 동적실험결과로부터 얻을 수 있으며, 일반적으로 강섬유보강 콘크리트는 증가된 에너지감쇠능력으로 인장철근이 소성전 상태에서 철근 콘크리트보의 경우보다 향상된 감쇠거동을 갖고 있는 것으로 판명되었다. 이들 결과의수치해석적인 입증을 위하여 curvature(곡률)와 감쇠값사이의 관계를 기초로 유한요소프로그램 (TICAL)을 개발하였으며, 결론적으로 0.44%인장철근비을 갖고 있는 강섬유보강 콘크리트의 감쇠비는 하중상태에 따라 철근 콘크리트보의 경우보다 약 5%에서 35%정도 향상된 감쇠비를 갖고 있는 것으로 조사되었다.

Development of Structural Analysis and Pre-post Program for Mega Frame System (초대형 골조시스템 전용 전후처리 및 해석프로그램의 개발)

  • Kim Hyun-Su;Lee Dong-Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.283-293
    • /
    • 2006
  • Recently, various types of structural systems for skyscrapers are studied as the height and size of the building structures rapidly increase due to social and economical needs. The mega frame system among them, which is the structural system developed recently, is known as a suitable structural system for skyscrapers because this structural system has sufficient stiffness against the lateral forces by combination of mega members which consist of many columns and girders. Since the mega frame structure has significant numbers of elements and nodes, it takes tremendous times and computer memories to analyze and design the structures. Therefore, the exclusive structural analysis program for mega frame system is developed to reduce the efforts and time required for the analysis and design of mega frame structure. To this end, an efficient modelling technique using the characteristics of mega frame structures and an efficient analytical model, which uses a few DOFs selected by the user using the matrix condensation method, are developed in this study. Static and dynamic analyses are conducted using an example structure. The effectiveness and accuracy of the developed program we verified by the comparison between the results of the proposed method and the conventional method.

An analytical study on the structural behavior of H shape column base plates under axial loads and moments (축력과 모멘트를 받는 H형강 주각부의 거동에 관한 해석적 연구)

  • Kim, Jeong Hyun;Lee, Seung Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.217-225
    • /
    • 2005
  • The purpose of this study is to investigate the behavior of H-shape column base plates subjected to axial loads and moments. In this study, the behavior of H-shape column base plates is investigated using finite element analysis method and an analytical modelingof the base plates is obtained. The variations of six test specimens include ratiosof axial load, sizes of anchor bolts, and thicknesses of base plates. The experimental results are compared with the results from the finite element analyses and those of the analytical modeling. Bearing pressures of base plates from the finite element analyses are compared with those that are assumed in the design of the base plates. From the results of the research, it is observed that the initial stiffness and yield strengths in the analytical study are very similar to the experimental results. And bearing pressures are concentrated under column section with thin base plates.

Earthquake Response Analysis of a RC Bridge Including the Effect of Repair/retrofitting (보수/보강 효과를 고려한 철근콘크리트교량의 내진응답해석)

  • Lee, Do Hyung;Cho, Kyu Sang;Jeon, Jeong Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.611-622
    • /
    • 2008
  • Nonlinear analyses have been carried out for both bridge piers and a bridge structure being repaired using a repair element in order to assess the post-repair seismic response of such structures. For this purpose, a simplified CFRP stress-strain model has been proposed. The analytical predictions incorporating the current developments correlate reasonably well with experimental results in terms of strength and stiffness. In addition, nonlinear dynamaic analyses have also been conducted for a bridge structure in terms of the created multiple earthquake sets to evaluate the effect of pier repair on the response of a whole bridge structure. In these analyses, potential plastic hinge zones of piers are virtually repaired by CFRP and steel jacketing. Comparative results prove the virtual necessity of performing nonlinear post-repair analyses under multiple earthquakes, particularly when the post-repair response features are required. In all, the present approaches are expected to provide salient information regarding a healthy seismic repair intervention of a damaged strcuture.

Study of Electrical and Mechanical Characteristic of Support Insulator for Out Door Sealing End Using Extra High Voltage Power Cable System (초고압 전력케이블 시스템의 Out Door Sealing End용 Support Insulator의 재질에 따른 전기적 기계적 특성에 관한 연구)

  • Ryu, Jeong-Hyun;Kim, Woo-Jin;Kim, Young-Bum;Han, Bong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1412_1413
    • /
    • 2009
  • 초고압 전력케이블용 기중 종단접속재에 사용되는 지지애자의 전기적 고절연 성능과 기계적 Compact화된 제품개발을 목적으로 Simulation Tool을 활용하여 전계해석을 수행하였고, 해석된 결과를 기초로 지지애자를 설계, 개발 하였다. 개발된 지지애자의 Sample을 채취하고 전기적, 기계적 시험을 통하여 신뢰성을 검증 하였다. 전계해석에 있어서는 Epoxy와 Porcelain 재료, Old type과 New type으로 구분하여 재료별, 구조별로 해석을 진행 하였다. 지지애자의 설계기준과 전기적, 기계적 시험 결과를 비교하여 개발된 제품의 특성에 있어서 얼마만큼의 안전율을 확보 할 수 있는지 알 수 있었고, Porcelain 지지애자와 비교하여 약 40%의 크기를 축소할 수 있는 전기적, 기계적 신뢰성이 확보된 지지애자를 개발 할 수 있었다.

  • PDF

A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling (선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.81-93
    • /
    • 2020
  • The fatigue characteristics of glass fiber reinforced plastic (GFRP) composites were studied under repeated loads using the finite element method (FEM). To realize the material characteristics of GFRP composites, Digimat, a mean-field homogenization tool, was employed. Additionally, the micro-structures and material models of GFRP composites were defined with it to predict the fatigue behavior of composites more realistically. Specifically, the fatigue characteristics of polybutylene terephthalate with short fiber fractions of 30wt% were investigated with respect to fiber orientation, stress ratio, and thickness. The injection analysis was conducted using Moldflow software to obtain the information on fiber orientations. It was mapped over FEM concerned with fatigue specimens. LS-DYNA, a typical finite element commercial software, was used in the coupled analysis of Digimat to calculate the stress amplitude of composites. FEMFAT software consisting of various numerical material models was used to predict the fatigue life. The results of coupled analysis of linear and nonlinear material models of Digimat were analyzed to identify the fatigue characteristics of GFRP composites using FEMFAT. Neuber's rule was applied to the linear material model to analyze the fatigue behavior in LCF regimen. Additionally, to evaluate the morphological and mechanical structure of GFRP composites, the coupled and fatigue analysis were conducted in terms of thickness.

Structural Reliability Evaluation Considering Construction Stage and Epistemic Uncertainty of Suspension Bridges (현수교의 시공절차와 인위적 불확실성을 고려한 구조신뢰성 평가)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.181-188
    • /
    • 2009
  • This study presented the basic data for determining reasonable construction method and evaluating the structural safety of suspension bridges. The analytical program was developed to conduct initial shape and natural frequency analysis, construction stage analysis and reliability analysis considering construction sequences. This program was based on analysis models of suspension bridges and reliability theories used in the previous study. A construction method was established considering various construction variables such as construction order and construction direction of girder and synchronized construction of main and side span etc. The dynamic construction analysis by a construction scheme was conducted with the developed program. Benefits of the characteristic analysis by the construction scheme was presented estimating structural response of critical members respectively. Structural reliability analysis by construction stage was conducted considering aleatory uncertainties. The safety of suspension bridges by established construction method was quantitatively estimated using reliability index and failure probability. Analytical results were re-estimated considering epistemic uncertainties, and critical percentile distributions of risk at the construction stage were presented using the frequency histogram.

The Influence of Hotels' Service Quality and Customer Value on the Reservation Intention: Temporal Construal Theory Perspective (호텔서비스품질과 고객가치가 예약의도에 미치는 영향: 시간해석이론 관점에서)

  • Do, Hyun-Ok;Kim, Gwi-Gon
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.307-313
    • /
    • 2012
  • The purpose of this study is to suggest a research for hotels' expected service quality which influences reservation intention of hotel services. And we checked that these relations are formed by mediating of customer value on the basis of temporal construal theory. The result of our studies is as follows: 1) An abstract hotels' expected service quality(a concrete hotels' expected service quality) influence more on the customer's the social psychological value(the functional value) than the functional value(the social psychological value). 2) The customer's functional value(the social psychological value) influence more on the reservation intention of hotel service near(distant) in time than distant(near) in time. This research provides a theoretical-practical implications to the marketing staffs like packaging designers as well as scholars to study hotel services.

Prediction of Brittle Failure within Mesozoic Granite of the Daejeon Region (대전지역 중생대 화강암 암반 내 취성파괴 예측연구)

  • Jang, Hyun-Sic;Choe, Mi-Mi;Bae, Dae-Seok;Kim, Geon-Young;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.357-368
    • /
    • 2015
  • Brittle failure of Mesozoic granite in the Daejeon region is predicted using empirical analysis and numerical modeling techniques. The input parameters selected for these techniques were based on the results of laboratory tests, including damage-controlled tests. Rock masses that were considered to be strong during laboratory testing were assigned to "group A" and those considered to be extremely strong were assigned to "group B". The properties of each group were then used in the analyses. In-situ stress measurements, or the ratio of horizontal to vertical stress (k), were also necessary for the analyses, but no such measurements have been made in the study area. Therefore, k values of 1, 2, and 3 were assumed. In the case of k=1, empirical analysis and numerical modeling show no indication of brittle failure from the surface to1000 m depth. When k=2, brittle failure of the rock mass occurs at depths below 800 m. For k=3, brittle failure occurs at depths below 600 m. Although both the Cohesion Weakening Friction Strengthening (CWFS) and Mohr-Coulomb models were used to predict brittle failure, only the CWFS model performed well in simulating the range and depth of the brittle failure zone.

A Numerical Study on the NATM Tunnel Reinforcement using Centrifuge Model Experimental value (실험값을 이용한 NATM 터널의 보강효과에 관한 수치 해석적 연구)

  • Huh, Kyung-Han;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.13-18
    • /
    • 2004
  • In this study, in the first place, parameters primarily influencing displacement and stress were constructed by using the Finite Difference Method; then using those parameters, the result of crown displacement and convergence among the existing, experimental values of a centrifuge model were compared with the result of numerical analysis; and then considering the stress and time effect of lining installation, parameters according to the difference of stiffness were studied. In the result of this study, it found out that rough, ground reinforcement effect manifests itself when reinforcement propert of the grouting of the big scale steel pipe through 3-D analysis is E= 4,000tf/m2 which of the stiffness of the original ground.