세계은행 통계에 따르면 2013~2016년 기간 중 세계 경제 성장에 대한 중국의 기여도는 31.6%인 것으로 나타났다. 이는 미국, EU 및 일본의 기여도를 합한 29.0%에 비해 높은 수치로서 중국 경제가 세계 경제에 미치는 영향력이 상당히 크다고 볼 수 있다. 본 연구는 중국의 주요 품목별(화학제품, 곡물, 철재, 원유, 컨테이너) 연도별 수출입 해상물동량이 세계 경제성장에 미치는 영향을 시계열 데이터 분석 모형을 적용하여 분석하였다. 총 분석기간은 1999~2016년이며, 제1기(1999~2007년)와 제2기(2008~2016년)의 시기별 분석을 수행함으로써 중국 무역이 세계 경제에 미치는 영향력 측면에서 시기별로 어떠한 구조적 변화가 발생했는지 조명하였다. 특히 대다수 선행연구들이 세계 무역이 세계 경제에 미치는 영향력을 분석하였다면, 본 연구는 중국 무역의 영향력을 분석하여 세계 무역 대국으로 부상하고 있는 중국을 집중적으로 분석하였다는 데 의의가 있다.
인간 활동으로 광범위한 자연 생태계 변화로 지난 몇 세기 동안 전 세계적으로 생물다양성이 심각하게 위협받고 있다. 생태계의 변화 양상을 파악하는 것은 생물다양성 위협을 파악하고 관리하는 데 필수적이다. 이러한 필요성에 따라 IUCN 의회는 2019년에 생태계의 기능과 유형을 고려한 IUCN Global Ecosystem Typology(GET)를 구성했다. IUCN은 10개의 생태계 군계, 108개의 생태기능별 토지 유형(EFG; Ecological Functional Group)을 전 지구적 범위에서 지도로 제공하고 있다. IUCN GET 생태계의 유형 분류에 따르면 국내 생태계는 Realm (1수준)이 8개, Biome (2수준)이 18개, Group (3수준)은 41개 유형으로 분류된다. IUCN이 제공하는 GET의 경우 전 세계 규모로 제작되었기 때문에 해상도가 낮고 실질적인 토지 현황과 일치하지 않는 경우가 많다. 본 연구는 토지피복지도를 활용하여 국내 IUCN GET 유형 분류의 정확도를 높이고 실질적인 현황을 반영한 지도를 제작하고자 했다. 이를 위해 ① IUCN GET에서 제공하는 국내 GET 데이터 체계를 검토하고, ② 이를 국내 현황과 비교 분석하였다. 이 과정을 통해 GET의 한계와 활용 가능성을 평가하고 ③ 이후 국가자료를 최대한 활용하여 국내 현황을 반영한 국내 GET 유형 분류를 수행하였다. 본 연구는 토지피복지도와 기존 국가자료를 최대한 활용하여 국내 GET를 총 25개 유형으로 분류했다(Terrestrial Realm :9, Freshwater: 9 Marine-Terrestrial: 5, Terrestrial-Freshwater :1, Marine-Freshwater-Terrestrial:1). 기존 지도와 비교했을 때 수정된 국내 GET의 경우 'F3.2 Constructed lacustrine wetlands', 'F3.3 Rice paddies', 'F3.4 Freshwater aquafarms', 'T7.3 Plantations'가 면적이 가장 많이 축소되었다. 온대 산림(T2.2)의 면적이 가장 많이 늘어났고, 'MFT1.3 Coastal saltmarshes and reedbeds', 'F2.2 Small permanent freshwater lakes'등 3개 유형 또한 수정 후 GET 면적이 증가했다. 해당 과정을 통해 기존 GET에서 모든 EFG의 합이 국토 면적의 8.33배를 차지하던 기존의 지도를, 토지피복지도를 활용하여 총합이 국토 면적의 1.22 배가 되도록 수정하였다. 이를 통해 유형별 차이가 작고 정확성이 떨어진 기존의 EFG가 본 연구를 통해 개선 및 수정되었음을 확인하였다. 본 연구는 현장 요건을 반영한 데이터를 최대한 활용하여 GET 기준에 상응하는 한국의 GET 지도를 제작한 것에 그 의의가 있다.
중국은 일찍 농업에 편중하는 식생산전통과 백성들이 어렵게 생계를 유지하는 식생활상태가 형성되었으며 이런 상황은 중국인들이 신랄(辛辣)한 맛에 대한 기호를 결정하였던 것이다. 중국인들이 신랄(辛辣)한 맛을 즐긴 역사는 선사시대까지 거슬러 올라간다. “랄(辣)”자(字)는 “신랄(辛辣)”이라는 단어에서 분리하여 특별히 매운 맛을 의미하는데 즉 일반적인 “신(辛)” 보다 더욱 “신(辛)”하다는 뜻이며 이 문자는 한(漢)나라 이후에야 나타난다. 고추는 명(明)나라 중엽에 해상을 통해 중국대륙에 전해 들어왔고 짧은 기간 내에 중국인들이 제일 보편적으로 식용하고 좋아하는 매운 음식으로 자리 잡았다. 중국에서 고추는 번초(蕃椒), 해초(海椒), 랄각(辣角), 랄호(辣虎), 랄자(辣子) 등 다양한 명칭을 갖고 있는데 이는 그 분포의 지리적 특징과 인문적인 특징을 반영한 것이다. 고추에 대해 최초로 기록한 한문문헌으로는 1591년에 출간된 ${\ulcorner}$존생팔전(尊生八箋)${\lrcorner}$이다. 본 논문에서는 상기 문헌의 고추에 관한 기록에 대한 종래 연구자들의 보편적인 견해와는 다른 새로운 관점을 제기하였다. 고추는 짧은 시간 내에 화초(花椒) 등 허다한 전통적인 매운 양념들을 재치고 결국 중국인들의 고추정서가 형성된 것은 “그 맛이 최고로 매웠던 것(기미최랄(其味最辣))” 및 적응성이 강하고 재배 할 때 소요되는 인력물력도 적게 드는 것과 중국인들이 보편적으로 매운 맛을 즐겼던 정서가 결합된 필연적인 결과라고 하겠다. 관습은 쉽게 개변하지 않고 오래 접하면 자연히 은이 생기며 강한 자극을 통쾌하다고 여기는 인간의 통성(通性)은 매운 맛에 대한 오랜 접촉으로 습관을 형성시키고 세월이 흘러도 고추를 먹는 습관만은 남게 되는 중요한 원인이다. 고추가 중국 대륙에서 불균형하게 보급되어 있는 상황에서 경제생활이 상대적으로 빈곤한 지역일수록 매운 맛에 대한 기호가 보다 강함을 알 수 있다.
본 연구에서는 농촌진흥청에서 홍콩과학기술대학교와 국제공동연구를 통해 개발중인 1개월 농업기상 예측 시스템을 이용하여 2012-2022년 기간 동안 1개월 과거기후 예측 정보를 생산하고, 유효적산온도 기법을 적용하여 벼 수확일 전망 가능성을 살펴보았다. 상세한 기후정보를 얻기 위해, 지역기후모델(WRF)을 이용하여 전지구 기후예측 정보(CFSv2)를 남한지역에 대해 5 km 해상도로 규모축소하였다. 벼 수확일은 역학적 규모축소된 최고기온과 최저기온 과거예측 자료를 유효적산온도에 적용하여 추정하였다. 모형의 최고기온(최저기온)는 벼 생육기간(5월~10월)에 대해 관측과 비교하여 약 1.2 ℃ (0.1 ℃) 정도 과소모의하였다. 벼 수확일 추정 자료는 정성적으로 관측의 전반적인 공간 패턴을 모의하면서 지형효과에 의한 상세한 지역적 편차를 모의하였다. 그러나 음의 기온 오차가 유효적산온도에 투영되어, 예측자료에서 추정한 벼 수확일이 관측에서 추정한 벼 수확일과 비교하여 정량적으로 약 9일 늦게 모의하였다. 본 연구를 통해 1개월 기상예측 정보와 유효적산온도를 이용하여 남한 전역에 대해 공간적으로 연속적인 상세한(5 km) 벼 수확일 정보를 사전에 얻을 수 있는 가능성을 보았다. 예측정보의 신뢰성을 확보하고, 유효적산온도 뿐만 아니라 농업모형과 연계한다면 다양한 작목에 대한 농업정보들을 사전에 생산할 수 있을 것으로 생각된다.
광해역의 표층 해수유동을 준 실시간으로 측정하는 장비인 해양 고주파 레이다(High Frequency Radar, HFR)는 특정 전파대역(HF)의 주파수를 해수면으로 발사하고 후방으로 산란된 전파를 분석하여 표층 유속 벡터를 측정한다(Crombie, 1955; Barrick, 1972). 본 연구에서 사용되는 Codar사의 Seasonde HF radar의 경우, 무지향성 안테나에서 송·수신한 전파의 브래그 피크(Bragg peak)의 강도와 다중신호분류(Mutiple Signal Classification, MUSIC) 알고리즘을 통하여 방사형 해류(Radial Vector)의 속도와 위치를 결정하게 된다. 이때 생산된 해류는 관측 전파 수신 환경의 특성이 고려되지 않은 이상적인 전파환경(Ideal Pattern)이 적용된 자료로써 이를 보정하기 위하여 안테나 패턴 측정(Antenna Pattern Measurement, APM)을 시행하여 보정된 방사해류장(Measured Radial Vector)을 계산하게 된다. APM의 관측원리는 안테나로부터 수신되는 각 위치별 신호 강도값을 측정하여 해류의 위치 및 위상 정보를 수정하는 것으로 일반적으로 선박에 안테나를 설치하여 실험을 진행한다. 하지만 선박을 활용할 시, 기상조건과 해양 상황 등 다양한 환경에 의해 최적의 APM 결과를 산출하기까지 많은 제약이 따른다. 따라서 APM 실험에 대하여 해상 상황에 대한 의존도를 낮추고 경제적인 효율성을 높이기 위하여 무인항공기인 드론을 이용한 APM 활용 가능성을 검토하였다. 본 연구에서는 전남 완도군 당사리 당사도등대에 설치된 고주파레이다를 활용하여 선박을 활용한 APM 실험과 드론을 활용한 APM 실험을 진행하였으며 선박과 드론으로 관측된 결과가 적용된 방사형 해류와 계류된 고정부이를 활용하여 그 결과를 비교 분석하였다.
산악지역의 기상정보를 상세하고 적절히 제공하기 위해 산림청에서는 2012년부터 전국 주요 산악지역을 대상으로 산악기상관측망(Automatic Mountain Meteorology Observation Station, AMOS)을 구축하여, 2022년 현재 464개의 관측소가 운영되고 있다. 본 연구에서는 AMOS 지점 관측을 이용하여 우리나라 산림에 적합한 기온 격자자료를 산출하기 위해서, 기온감률 보정을 적용한 최적의 크리깅(kriging) 기법을 제안하고 그 가용성을 평가하였다. 우선 통계적 처리를 통해 AMOS 기온자료의 이상치를 제거하였고, 이 자료를 이용하여 경험 베리오그램(variogram)에 가장 근사하는 이론 베리오그램을 도출하여 최적화 크리깅을 수행하였다. 이 때 기온감률 보정(lapse rate correction)을 적용하여 산악지형의 고도 변이가 반영되는 500 m 해상도의 기온격자지도를 생성하였다. 공간적으로 치우치지 않은 검증샘플을 이용한 암맹평가를 통해 본 기법의 가용성을 평가한 결과, 0.899-0.953의 상관계수 및 0.933-1.230℃의 오차를 나타내 기온감률 보정을 적용하지 않은 정규크리깅에 비해 정확도가 다소 향상되었다. 또한 기온감률 크리깅은 우리나라 산림의 복잡지형을 잘 표현하여, 강원도 산간지역과 해안산림지역의 국지적인 변이 및 지리산·내장산과 그 주변 산림의 지형적 차이와 같은 미세한 지역특성을 살릴 수 있다는 것이 가장 큰 장점이라고 할 수 있다.
기후변화 등으로 인해 전 세계적으로 산불이 점점 잦아지고 대형화되는 추세다. 위성영상 등의 원격탐사를 통한 산불피해 면적 및 피해강도를 산정하는 것은 현장조사에 따른 여러 가지 어려움을 줄일 수 있어 대안 및 보조자료로 활용이 가능하다. 산불피해강도(differenced normalized burn ratio, dNBR)는 산불 전후의 정규탄화지수(normalized burn ratio, NBR) 차이를 통해 산정하며, NBR 수식에 사용되는 영상은 Landsat의 근적외선(near infrared, NIR)과 단적외선(short-wavelength infrared, SWIR) 밴드를 기본으로 한다. 우리나라 위성영상의 경우, SWIR 밴드를 가지고 있지 않기 때문에 산불피해와 관련한 국내 연구들은 해외영상을 사용하거나 우리나라 위성영상을 사용한 경우, 정규식생지수(normalized difference vegetation index, NDVI)를 이용하여 간접적인 방법으로 dNBR을 산출하였다. 따라서 본 연구에서는 Kompsat-3A호(K3A)의 중적외선(mid-wavelength infrared, MWIR) 밴드를 NBR 수식의 SWIR 밴드 대신 대입하여 dNBR을 산정하고, dNBR의 기준이 되는 Landsat을 이용한 dNBR 결과 값과 비교하였다. 그 결과 K3A MWIR을 이용한 dNBR이 Landsat SWIR을 이용한 dNBR에 비해 나타낼 수 있는 값의 범위가 더 넓고 세분화하여 표현이 가능하였다. 따라서 산불피해 지역을 조사하는데 있어 K3A의 활용도가 높을 것이라 사료된다. 뿐만 아니라 본 연구에서는 30m로 열화된 K3A MWIR 밴드를 사용했으나 그보다 높은 해상도의 MWIR 밴드를 사용한다면 본 연구보다 훨씬 더 나은 결과를 얻을 수 있을 것이라 사료된다.
중적외선(mid-wave infrared, MWIR) 영상은 피복 및 객체의 온도를 파악할 수 있어 환경, 국방 등 다양한 분야에서 핵심 데이터로 사용된다. KOMPSAT-3A 위성은 타 위성에 비해 높은 공간해상도의 MWIR 영상을 제공하지만, 광학(electro-optical, EO) 영상에 비해 상대적으로 낮은 시인성을 가져 활용성의 확대에 어려움을 겪는다. 이에 본 연구에서는 KOMPSAT-3A 전정색(panchromatic, PAN) 영상의 윤곽 정보를 기반으로 시인성이 높은 MWIR 융합 영상을 제작하고자 한다. 먼저, 이종 센서에서 취득된 PAN 영상과 MWIR 영상의 상대 기하오차를 제거하는 전처리를 수행하고, 딥러닝 기반 윤곽 정보 추출 기술인 Pixel difference network (PiDiNet)의 사전 학습 모델을 이용하여 PAN 영상에 대한 윤곽 정보를 추출한다. 이후 전처리된 MWIR 영상과 추출된 윤곽 정보를 중첩하여 객체 경계면이 강조된 MWIR 융합 영상을 제작한다. 제안 방법을 이용하여 서로 다른 세 지역에 대한 MWIR 융합 영상을 제작하였으며, 이를 시각적으로 분석하였다. 본 기법을 통해 제작된 MWIR 융합 영상은 지형 및 지물의 경계면이 강조되어 시인성이 개선되었으며, 세부적으로 관심 지역에 대한 열 정보를 전달할 수 있었다. 특히, MWIR 융합 영상에서는 저해상도의 원본 MWIR 영상에서 식별할 수 없었던 비행기, 선박 등의 객체를 육안으로 판독할 수 있었다. 본 연구는 가시적인 정보와 열 정보를 동시에 고려할 수 있는 단일 영상 제작 방법론을 제시하였으며, 이는 MWIR 영상의 활용성 확대에 이바지할 수 있을 것으로 사료된다.
해빙(sea ice)은 현재 전 세계 해양 면적의 약 7%를 차지하고 있으며 계절적, 연간 변화를 보이고 주로 극지방과 고위도 지역에 나타난다. 해빙은 대규모 공간 규모에서 다양한 종류로 형성되며 석유 및 가스탐사, 기타 해양활동이 급속히 증가하는 발해해는 해양 구조물 피해 및 해상 운송, 해양 생태계에 심각한 영향을 미치기 때문에 시계열 모니터링을 통해 해빙의 면적 및 유형 분류를 분석하는 것이 매우 중요하다. 현재 고해상도 위성영상 및 현장 실측 자료를 바탕으로 해빙의 종류 및 영역에 대한 연구가 진행되고 있지만 현장 실측자료를 획득하여 해빙 모니터링에는 한계가 있다. 고해상도 광학 위성영상은 광범위에서 해빙의 유형을 육안으로 탐지하고 식별할 수 있고, 짧은 시간해상도를 갖는 해양위성인 천리안 2B호(Geostationary Ocean Color Imager-II, GOCI-II)를 이용하여 해빙 모니터링의 공백을 보완할 수 있다. 이 연구에서는 고해상도 광학위성영상을 이용하여 생산된 학습자료를 기반으로 규칙기반 기계학습 모델을 훈련시키고 이를 GOCI-II 영상에서 탐지를 수행함으로써, 해빙 모니터링 활용 가능성을 알아보고자 하였다. 학습 자료는 발해(Bohai Sea)의 2021-2022년 랴오둥만(Liaodong Bay)을 대상으로 추출하였으며, GOCI-II를 활용한 Random Forest (RF) 모델을 구축하여 기존 normalized difference snow index (NDSI) 지수 기반 및 고해상도 위성영상에서 획득된 해빙 영역과 정성적 및 정량적 비교 분석하였다. 본 연구 결과 해빙의 영역을 과소평가한 NDSI 지수 기반 결과와 달리 비교적 자세한 해빙 영역을 탐지하였으며 유형별 해빙을 분류할 수 있어 해빙 모니터링이 가능함을 확인하였다. 향후 지속적인 학습 자료 및 해빙형성에 영향인자 구축을 통해 탐지 모델의 정확도를 향상시킨다면 고위도 해양 지역에서 해빙 모니터링 분야에 활용할 수 있을 것으로 기대된다.
해양 내의 다양한 물리적 변화는 수온과 염분의 지속적인 변동에 의해 결정된다. 수온과 더불어 넓은 영역의 염분 변화를 파악하기 위해서는 인공위성 자료에 의존할 수밖에 없다. 그럼에도 불구하고 염분을 관측하는 위성인 Soil Moisture Active Passive (SMAP)는 낮은 시·공간 해상도로 인해 연안 근처에서 빠르게 변화하는 해양환경을 관측하기에는 어렵다는 한계가 존재한다. 이러한 한계를 극복하기 위해 본 연구에서는 천리안 해양 관측 위성의 정지궤도 해색 센서인 Geostationary Ocean Color Imager-II (GOCI-II) 원격반사도 자료를 입력자료로 하여 고해상도 표층 염분을 산출하는 Multi-layer Perceptron Neural Network (MPNN) 기반의 알고리즘을 개발하였다. SMAP과 비교한 결과 coefficient of determination (R2)는 0.94, root mean square error (RMSE)는 0.58 psu 그리고 relative root mean square error (RRMSE)는 1.87%였으며, 공간적인 분포 또한 매우 유사한 결과를 나타냈다. R2의 공간 분포는 0.8 이상을 보여주었으며 RMSE는 전반적으로 1 psu 이하의 낮은 값을 보여주었다. 이어도 과학기지에서의 실측 염분값과도 비교하였지만 상대적으로 조금 낮은 결과를 보여주었다. 이에 대한 원인을 분석하였으며, 산출된 GOCI-II 기반 고해상도 염분 자료를 활용하여 2022년 11호 태풍 힌남노에 의한 하루 동안의 동중국해 표층 염분 변화를 표준편차로 계산하였다. 그 결과 SMAP에서 관측할 수 없는 시공간의 염분 변화를 고해상도의 GOCI-II 기반 염분 산출물을 통해 확인할 수 있었다. 따라서 본 연구를 통해 시간 단위로 변화하는 해양환경 모니터링에 큰 기여를 할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.