• Title/Summary/Keyword: 해상도 향상

Search Result 1,199, Processing Time 0.033 seconds

A Progressive Rendering Method to Enhance the Resolution of Point Cloud Contents (포인트 클라우드 콘텐츠 해상도 향상을 위한 점진적 렌더링 방법)

  • Lee, Heejea;Yun, Junyoung;Kim, Jongwook;Kim, Chanhee;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.258-268
    • /
    • 2021
  • Point cloud content is immersive content that represents real-world objects with three-dimensional (3D) points. In the process of acquiring point cloud data or encoding and decoding point cloud data, the resolution of point cloud content could be degraded. In this paper, we propose a method of progressively enhancing the resolution of sequential point cloud contents through inter-frame registration. To register a point cloud, the iterative closest point (ICP) algorithm is commonly used. Existing ICP algorithms can transform rigid bodies, but there is a disadvantage that transformation is not possible for non-rigid bodies having motion vectors in different directions locally, such as point cloud content. We overcome the limitations of the existing ICP-based method by registering regions with motion vectors in different directions locally between the point cloud content of the current frame and the previous frame. In this manner, the resolution of the point cloud content with geometric movement is enhanced through the process of registering points between frames. We provide four different point cloud content that has been enhanced with our method in the experiment.

Single Image Super Resolution using Multi Grouped Block with Adaptive Weighted Residual Blocks (적응형 가중치 잔차 블록을 적용한 다중 블록 구조 기반의 단일 영상 초해상도 기법)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.3 no.3
    • /
    • pp.9-14
    • /
    • 2024
  • In this paper, proposes a method using a multi block structure composed of residual blocks with adaptive weights to improve the quality of results in single image super resolution. In the process of generating super resolution images using deep learning, the most critical factor for enhancing quality is feature extraction and application. While extracting various features is essential for restoring fine details that have been lost due to low resolution, issues such as increased network depth and complexity pose challenges in practical implementation. Therefore, the feature extraction process was structured efficiently, and the application process was improved to enhance quality. To achieve this, a multi block structure was designed after the initial feature extraction, with nested residual blocks inside each block, where adaptive weights were applied. Additionally, for final high resolution reconstruction, a multi kernel image reconstruction process was employed, further improving the quality of the results. The performance of the proposed method was evaluated by calculating PSNR and SSIM values compared to the original image, and its superiority was demonstrated through comparisons with existing algorithms.

Hierarchical Multidirectional Motion Estimation Algorithm for Frame Rate Up-Conversion (프레임 율 향상을 위한 계층적 다방향 움직임 추정 알고리즘)

  • Yu, Songhyun;Park, Bumjun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.70-73
    • /
    • 2017
  • 본 논문에서 프레임 율 향상을 위한 새로운 움직임 추정 알고리즘에 대해 제안한다. 계산량을 줄이고 다해상도의 영상을 이용하기 위하여 원본 프레임들을 계층적 구조로 형성하고, 최상위 계층에서 단방향 움직임 추정을 수행한다. 최상위 계층은 낮은 해상도 때문에 움직임 벡터의 정확도가 낮아지므로, 정확도를 향상시키기 위해 각각의 블록은 5 개의 움직임 벡터 후보들을 가진다. 이 후보들은 아래 계층들에서 수정되며, 움직임 추정이 완료되면 최하위 계층의 움직임 벡터들은 SAD (sum of absolute difference) 값을 이용해서 최종적으로 수정된다. 이렇게 구해진 단방향 움직임 벡터들은 양방향 움직임 벡터로 변환되고 양방향 보간법을 사용하여 보간 프레임을 생성한다. 결과적으로, 제안하는 알고리즘은 기존 알고리즘들에 비해 낮은 계산량을 나타내면서 PSNR (peak signal-to-noise ratio) 수치에서 최대 1.3 dB 의 향상을 나타냈고, 주관적으로도 더 선명한 결과를 보여주었다.

  • PDF

Learning-Based Superresolution for 4D Light Field Images (4 차원 Light Field 영상에서의 학습 기반 초해상도 알고리즘)

  • Lee, Seung-Jae;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.497-498
    • /
    • 2015
  • 영상을 취득한 후 다양한 응용프로그램으로 확장이 가능한 4 차원 light field 영상은 일반적인 2 차원 공간 (spatial) 영역과 추가적인 2 차원 각 (angular) 영역으로 구성된다. 그러나 이러한 4 차원 light field 영상을 2 차원 CMOS 센서로 취득하므로 이에 따른 해상도 제약이 존재한다. 본 논문에서는 이러한 4 차원 light field 영상이 가지는 해상도 제약 조건을 해결하기 위하여, 4 차원 light field 영상에 적합한 학습 기반 (learning-based) 초해상도 (superresolution) 알고리즘을 제안한다. 제안하는 알고리즘은 공간영역 해상도 그리고 각영역의 해상도를 각각 2 배 향상시킨다. 실험에 사용되는 영상은 상용 light field 카메라인 Lytro 에서 취득하며, 기존의 선형 보간 기법인 bicubic 기법과의 비교를 통해 제안하는 기법의 우수성을 검증한다.

  • PDF

Super-Resolution Reconstruction using adjusted input image (보정된 입력영상을 이용한 초해상도 영상복원)

  • Um, Jong-Bum;Yun, Jong-ho;Choi, Myung-Ryul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.310-313
    • /
    • 2011
  • 초해상도 영상복원은 저해상도 영상을 이용하여 하나의 고해상도 영상을 획득하는 기법이다. 초해상도 영상복원은 크게 두 가지 방법으로 구현된다. 단일 영상을 이용한 초해상도 영상복원과, 여러 장의 저해상도 영상을 이용한 초해상도 영상복원 기법이 연구되고 있다. 여러 장의 저해상도 영상을 이용한 공간영역에서의 초해상도 영상복원 알고리즘은 크게 정합, 보간, 후처리 과정을 거치게 된다. 본 논문에서는 정합과정 이전에 입력영상보정을 통한 전처리과정을 수행하여 잡음으로 인한 부정확한 위치정보추정 확률을 감소시키고, 입력영상보정과정인 전처리과정으로 인해 후처리과정을 통한 영상복원 영상보다 향상된 영상을 획득하는 기법을 제안하며, 실험결과에서 기존의 방법보다 좋은 영상을 얻음을 확인하였다.

Spatiotemporal Resolution Enhancement of PM10 Concentration Data Using Satellite Image and Sensor Data in Deep Learning (위성 영상과 관측 센서 데이터를 이용한 PM10농도 데이터의 시공간 해상도 향상 딥러닝 모델 설계)

  • Baek, Chang-Sun;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.517-523
    • /
    • 2019
  • PM10 concentration is a spatiotemporal phenomenta and capturing data for such continuous phenomena is a difficult task. This study designed a model that enhances spatiotemporal resolution of PM10 concentration levels using satellite imagery, atmospheric and meteorological sensor data, and multiple deep learning models. The designed deep learning model was trained using input data whose factors may affect concentration of PM10 such as meteorological conditions and land-use. Using this model, PM10 images having 15 minute temporal resolution and 30m×30m spatial resolution were produced with only atmospheric and meteorological data.

Super-Resolution Using NLSA Mechanism (비지역 희소 어텐션 메커니즘을 활용한 초해상화)

  • Kim, Sowon;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2022
  • With the development of deep learning, super-resolution (SR) methods have tried to use deep learning mechanism, instead of using simple interpolation. SR methods using deep learning is generally based on convolutional neural networks (CNN), but recently, SR researches using attention mechanism have been actively conducted. In this paper, we propose an approach of improving SR performance using one of the attention mechanisms, non-local sparse attention (NLSA). Through experiments, we confirmed that the performance of the existing SR models, IMDN, CARN, and OISR-LF-s can be improved by using NLSA.

Image Enhancement Techniques for MPEG-4 (MPEG-4 영상의 화질 개선에 관한 연구)

  • 김태근;신정호;백준기
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.169-181
    • /
    • 1997
  • In this paper, we propose and discuss about image enhancement techniques for MPEG-4. which represents very low bit-rate, content-based. and object-based hierarchical audio-visual coding standard. The proposed enhancement technique removes undesired artifacts arising in the compression procedure and increase resolution in both spatial and temporal domains. In order to remove undesired artifacts. we divide the MPEG-4 video algorithm in two parts: MPEG-2 like part and the new part. For removing artifacts caused by the first part. we adopt the conventional blocking artifacts algorithm developed for MPEG-2. On the other hand for removing artifacts caused by the second part. we provide a new degradation model. and propose the corresponding image restoration method. For increasing resolution of the MPEG-4 images, we propose a general framework of multichannel image interpolation process. which includes both spatial and temporal interpolations. As the MPEG-4 standard is under development. various sophisticated techniques are considered. but research on image enhancement techniques is relatively underestimated. By this reason. additional image enhancement techniques will become very important issue in realization phase of MPEG-4.

  • PDF

Dictionary Learning based Superresolution on 4D Light Field Images (4차원 Light Field 영상에서 Dictionary Learning 기반 초해상도 알고리즘)

  • Lee, Seung-Jae;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.676-686
    • /
    • 2015
  • A 4D light field image is represented in traditional 2D spatial domain and additional 2D angular domain. The 4D light field has a resolution limitation both in spatial and angular domains since 4D signals are captured by 2D CMOS sensor with limited resolution. In this paper, we propose a dictionary learning-based superresolution algorithm in 4D light field domain to overcome the resolution limitation. The proposed algorithm performs dictionary learning using a large number of extracted 4D light field patches. Then, a high resolution light field image is reconstructed from a low resolution input using the learned dictionary. In this paper, we reconstruct a 4D light field image to have double resolution both in spatial and angular domains. Experimental result shows that the proposed method outperforms the traditional method for the test images captured by a commercial light field camera, i.e. Lytro.

Fusion Methods of License Plate Detection and Super Resolution for Improving License Plate Recognition (번호판 인식 향상을 위한 번호판 검출과 초해상도 융합 방법)

  • Song, Tae-Yup;Lee, Young-Hyun;Kim, Min-Jae;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.53-60
    • /
    • 2011
  • This paper proposes fusion methods of license plate detection and super-resolution for improving license plate recognition in low-resolution images. In the proposed method, we apply the license plate detection based on local structure pattern feature and the sequential super-resolution based on Kalman filter. The proposed fusion methods are divided into two according to whether the license plate is detected or not in the input image : (i) performing license plate detection after restoring whole image through super resolution, and (ii) restoring only the detected region through super-resolution after detecting the license plate. We demonstrated effectiveness of the proposed methods in various environments.