Abstract
This paper proposes fusion methods of license plate detection and super-resolution for improving license plate recognition in low-resolution images. In the proposed method, we apply the license plate detection based on local structure pattern feature and the sequential super-resolution based on Kalman filter. The proposed fusion methods are divided into two according to whether the license plate is detected or not in the input image : (i) performing license plate detection after restoring whole image through super resolution, and (ii) restoring only the detected region through super-resolution after detecting the license plate. We demonstrated effectiveness of the proposed methods in various environments.
본 논문에서는 저해상도 영상에서 번호판 인식 성능 향상을 위해 번호판 검출 기술과 초해상도 복원 기술의 융합 방법을 제안한다. 제안된 알고리즘에서 번호판 검출 부분은 구조적 패턴 특징을 기반으로 하였으며, 초해상도 부분은 칼만 필터 기반 순차적 데이터 방법으로 구성된다. 제안한 융합 방법은 입력 영상에서 번호판 검출 여부에 따라 (i) 전체 영상에 대한 초해상도 복원 과정을 거친 후 고해상도 번호판 영상을 얻는 방법과, (ii) 번호판 검출 후 검출된 번호판 영역에 대해 초해상도 복원을 수행하여 고해상도 번호판 영상을 얻는 방법으로 나뉜다. 다양한 환경에서의 모의 실험을 통해 제안된 융합 방법의효용성을 입증하였다. 다양한 환경에서의 모의 실험을 통해 제안된 융합 방법의 효용성을 입증하였다.