• Title/Summary/Keyword: 항복 전압

Search Result 221, Processing Time 0.027 seconds

Optimization of 4H-SiC Vertical MOSFET by Current Spreading Layer and Doping Level of Epilayer (Current Spreading Layer와 에피 영역 도핑 농도에 따른 4H-SiC Vertical MOSFET 항복 전압 최적화)

  • Ahn, Jung-Joon;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.767-770
    • /
    • 2010
  • In this work, we investigated the static characteristics of 4H-SiC vertical metal-oxidesemiconductor field effect transistors (VMOSFETs) by adjusting the doping level of n-epilayer and the effect of a current spreading layer (CSL), which was inserted below the p-base region with highly doped n+ state ($5{\times}10^{17}cm^{-3}$). The structure of SiC VMOSFET was designed by using a 2-dimensional device simulator (ATLAS, Silvaco Inc.). By varying the n-epilayer doping concentration from $1{\times}10^{16}cm^{-3}$ to $1{\times}10^{17}cm^{-3}$, we investigated the static characteristics of SiC VMOSFETs such as blocking voltages and on-resistances. We found that CSL helps distribute the electron flow more uniformly, minimizing current crowding at the top of the drift region and reducing the drift layer resistance. For that reason, silicon carbide VMOSFET structures of highly intensified blocking voltages with good figures of merit can be achieved by adjusting CSL and doping level of n-epilayer.

The Effect of Fixed Oxide Charge on Breakdown Voltage of p+/n Junction in the Power Semiconductor Devices (전력용 반도체 소자의 설계 제작에 있어서 Fixed oxide charge가 p+/n 접합의 항복전압에 미치는 영향)

  • Yi, C.W.;Sung, M.Y.;Choi, Y.I.;Kim, C.K.;Suh, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.155-158
    • /
    • 1988
  • The fabrication of devices using plans technology could lend to n serious degradation in the breakdown voltage as a result of high electric field at the edges. An elegant approach to reducing the electric field at the edge is by using field limiting ring. The presence of surface charge has n strong influrence on the depletion layer spreading at the surface region because this charge complements the charge due to the ionized acceptors inside the depletion layer. Surface charge of either polarity can lower the breakdown voltage because it affects the distribution of electric field st the edges. In this paper we discuss the influrences of fixed oxide charge on the breakdown voltage of the p+/n junction with field limiting ring(or without field limiting ring).

  • PDF

Effect on Metal Guard Ring in Breakdown Characteristics of SiC Schottky Barrier Diode (금속 가드 링이 SiC 쇼트키 다이오드의 항복전압에 미치는 영향)

  • Kim, Seong-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.877-882
    • /
    • 2005
  • In order to fabricate a high breakdown SiC-SBD (Schottky barrier diode), we investigate an effect on metal guard ring (MGR) in breakdown characteristics of the SiC-SBD. The breakdown characteristics of MGR-type SiC-SBD is significantly dependent on both the guard ring metal and the alloying time of guard ring metal. The breakdown characteristics of MGR-type SiC-SBDs are essentially improved as the alloying time of guard ring metal is increased. The SiC-SBD without MGR shows less than 200 V breakdown voltage, while the SiC-SBD with Al MGR shows approximately 700 V breakdown voltage. The improvement in breakdown characteristics is attributed to the field edge termination effect by the MGR, which is similar to an implanted guard ring-type SiC-SBD. There are two breakdown origins in the MGR-type SiC-SBD. One is due to a crystal defects, such as micropipes and stacking faults, in the Epi-layers and the SiC substrate, and occurs at a lower electric field. The other is due to the destruction of guard ring metal, which occurs at a higher electric field. The demolition of guard ring metal is due to the electric field concentration at an edge of Schottky contact metal.

Breakdown Voltage and On-resistance Characteristics of the Surface Doped SOI RESURF LDMOSFET (표면 도핑 기법을 사용한 SOI RESURF LDMOSFET의 항복전압 및 온-저항 특성 분석)

  • Kim Hyoung-Woo;Kim Sang-Cheol;Bahng Wook;Kang In-Ho;Kim Kl-Hyun;Kim Nam-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.23-28
    • /
    • 2006
  • In this paper, breakdown voltage and on-resistance characteristics of the surface doped SOI RESURF LDMOSFET were investigated as a function of surface doping depth. In order to verify the variation of characteristics, two-dimensional device simulation was carried out. Breakdown voltage of the proposed structure is varied from $73 {\~}138V$ while surface doping depth varied from $0.5{\~}2.0{\mu}m$. And on-resistance is decreased from $0.18{\~}0.143{\Omega}/cm^2$ while surface doping depth increased from $0.5 {\~}2.0{\mu}m$. Maximum breakdown voltage of the proposed structure is 138 V at $1.5{\mu}m$ depth of surface doping, yielding $22.1\%$ of improvement of breakdown voltage in comparison with that of the conventional SOI RESURF LDMOSFET with same epi-layer concentration. On-resistance characteristic is also improved about $21.7\%$.

Breakdown Voltage and On-resistance Characteristics of N-channel EDMOS with Dual Work Function Gate (이중 일함수 구조를 적용한 N-채널 EDMOS 소자의 항복전압 및 온-저항 특성)

  • Kim, Min-Sun;Baek, Ki-Ju;Kim, Yeong-Seuk;Na, Kee-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.9
    • /
    • pp.671-676
    • /
    • 2012
  • In this paper, TCAD assessment of 30-V class n-channel EDMOS (extended drain metal-oxide-semiconductor) transistors with DWFG (dual work function gate) structure are described. Gate of the DWFG EDMOS transistor is composed of both p- and n-type doped region on source and drain side. Additionally, lengths of p- and n-type doped gate region are varied while keeping physical channel length. Two-dimensional device structures are generated trough TSUPREM-4 and their electrical characteristics are investigated with MEDICI. The DWFG EDMOS transistor shows improved electrical characteristics than conventional device - i.e. higher transconductance ($g_m$), better drain output current ($I_{ON}$), reduced specific on-resistances ($R_{ON}$) and higher breakdown characteristics ($BV_{DSS}$).

A Study on the Analog/Digital BCDMOS Technology (아날로그/디지탈 회로 구성에 쓰이는 BCDMOS소자의 제작에 관한 연구)

  • Park, Chi-Sun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.62-68
    • /
    • 1989
  • In this paper, Analog/Digital BCDMOS technology that the bipolar devices for driver applications CMOS devices for logic applications, and DMOS devices for high voltage applications is pressented. An optimized poly-gate p-well CMOS process is chosen to fabricate the BCDMOS, and the basic concepts to desigh these devices are to improve the characteristics of bipolar, CMOS & DMOS with simple process technology. As the results, $h_{FE}$ value is 320 (Ib-$10{\mu}A$ for bipolar npn transistor, and there is no short channel effects for CMOS devices which have Leff to $1.25{\mu}m$ and $1.35{\mu}m$ for n-channel and p-channel, respectively. Finally, breakdown voltage is obtained higher than 115V for DMOS device.

  • PDF

ELECTRO-CHEMICAL ASPECTS OF STRESS CORROSION OF MILD STEELS ( I ) (연강의 전기화학적인 응력부식에 관한 연구 (I))

  • KIM Suk-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.7 no.4
    • /
    • pp.234-237
    • /
    • 1974
  • Electro-chemical aspects of stress corrosion on the mild steels when immersed in the $5\%\;H_2SO_4$ solution and charged with 100mV and 100mA were discussed. The main results of the experiment are follows; 1. The weight loss by corrosion was concerned with the applied stress. and the larger the applied stress, the greater the weight loss. 2. Reduction of corrosion stress was a factor of inverse proportion to the applied stress. 3. Corrosion began at first on the parts of impurities concentrated and the grain boundaries, and gradually developed and spreaded out. 4. The materials of unsteady structure deformed of space lattice by the high stress or work-hardening showed less reduction of corrosion stress.

  • PDF

Characteristics Modeling of Junction Barrier Schottky Diodes for ultra high breakdown voltage with 4H-SiC substrate (탄화규소(4H) 기판의 초고내압용 접합 장벽 쇼트키 다이오드의 특성 모델링)

  • Song, Jae-Yeol;Bang, Uk;Kang, In-Ho;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.200-203
    • /
    • 2007
  • Devices of junction barrier schottky(JBS) structure using 4H-SiC substrates with wide energy band gaps was designed and fabricated. As a measurement results, the device of reverse I-V characteristics was shown as more than 1000 V, its design optimum length of p-grid was $3{\mu}m$ space. In this paper, I-V characteristics was modeled by using of device fabricated process conditions parameters and it was extracted that the I-V property parameters, and it was compared and analyzed with between device parameters and model parameters.

  • PDF

Analysis of the breakdown characteristics of SOI LIGBT with dual-epi layer (이중에피층을 갖는 SOI LIGBT의 항복전압 특성분석)

  • Kim, Hyoung-Woo;Kim, Sang-Cheol;Seo, Kil-Soo;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.249-251
    • /
    • 2003
  • This paper discribes the analysis of the breakdown voltage characteristics of SOI LIGBT with dual epi-layer. In case of SOI LIGBT with dual epi-layer, if we used high doping concentration in epi-layer, we obtained higher breakdown voltage compared with typical device because of charge compensation effect, and we obtained low on-state resistivity characteristic in the same breakdown voltage. In this paper, we analyzed on-state and off-state characteristics of SOI LIGBT with dual epi-layer. Breakdown voltage of proposed LIGBT was shown 125V when $T_1=T_2=2.5{\mu}m$, $N_1=7{\times}10^{15}/cm^3$ and $N_2=3{\times}10^{15}/cm^3$, respectively Although we used high doping concentration and thin epi-layer thickness, breakdown voltage was increased compared with conventional devices.

  • PDF

Junction termination technology for 4H-SiC devices (Junction termination 기법에 따른 4H-SiC 소자의 항복전압 특성 분석)

  • Kim, H.Y.;Bahng, W.;Song, G.H.;Kim, N.K.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.286-289
    • /
    • 2003
  • In the case of high voltage devices, junction termination plays an important role in determining the breakdown voltage of the device. The mesa junction termination has been demonstrated to yield nearly ideal breakdown voltage for 6H-SiC p-n junctions. However, such an approach may not be attractive because of the nonplanar surface, which is difficult to passivate. Moreover, In case of 4H-SiC, ideal breakdown voltage could not be achieved using mesa junction termination. For 4H-SiC planar junction termination technique is more useful one rather than mesa junction termination. In this paper, breakdown characteristics of the 4H-SiC device with planar junction termination, such as FLR(Field Limiting Ring), FP(Field Plate) and JTE(Junction Termination Extension), is presented. In the case of the FLR, breakdown voltage of 1800V is obtained. And breakdown voltage of 1000V and 1150V is also obtained for the case of FP and JTE case, respectively.

  • PDF