• Title/Summary/Keyword: 항공기 지연

Search Result 95, Processing Time 0.019 seconds

A Study on the Critical Meteorological Factors Influencing the Flight Cancelation and Delay: Focusing on Domestic Airports (국내 항공운항에서 기상현상이 결항 및 지연에 미치는 영향 분석)

  • Lee, Joong-Woo;Ko, Kwnag-Kun;Kwon, Tae-Sun;Lee, Ki-Kwang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.29-37
    • /
    • 2011
  • Last April, Europe was severly damaged as all social and economic activities came to a halt prompted by the cancellation of all flights resulting from volcanic ash. This exemplifies that the meteorology conditions have significant influence on the flights of airplanes. Hence, in this research the influence that the meteorology has on the domestic flights and its characteristics will be examined, and the core meteorological factors that influence flights in each airport will be drawn. In order to do this, statistical analysis on the influence that the meteorology has on flights was carried out in order to analyze the data about flight cancelation and delay and also its cause, primarily based on the Gimpo, Gimhae, and the Jeju airports. As a result, first, the meteorological factors which impact flight cancellation and delay were different among the domestic airports, and second, it was analyzed that fog was the main meteorological factor in the Gimpo airport, strong wind in the Jeju airport, and fog in the Gimhae airport. Third, between the day the flights were cancelled and delayed occurred, and the day that weren't, the fact that there existed a difference among the actual meteorological factors was statistically drawn. With the result of such analysis, meteorological factors pertaining to the cancellation and delay of flights must be considered seperately by each airport and specialized meteorological information must be provided accordingly. Further, when selecting the position of an airport that is to be constructed in the future, implications that there is a definite need for the meteorology effect evaluation based on past meteorology data can be drawn.

Regionalized TSCH Slotframe-Based Aerial Data Collection Using Wake-Up Radio (Wake-Up Radio를 활용한 지역화 TSCH 슬롯프레임 기반 항공 데이터 수집 연구)

  • Kwon, Jung-Hyok;Choi, Hyo Hyun;Kim, Eui-Jik
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • This paper presents a regionalized time slotted channel hopping (TSCH) slotframe-based aerial data collection using wake-up radio. The proposed scheme aims to minimize the delay and energy consumption when an unmanned aerial vehicle (UAV) collects data from sensor devices in the large-scale service area. To this end, the proposed scheme divides the service area into multiple regions, and determines the TSCH slotframe length for each region according to the number of cells required by sensor devices in each region. Then, it allocates the cells dedicated for data transmission to the TSCH slotframe using the ID of each sensor device. For energy-efficient data collection, the sensor devices use a wake-up radio. Specifically, the sensor devices use a wake-up radio to activate a network interface only in the cells allocated for beacon reception and data transmission. The simulation results showed that the proposed scheme exhibited better performance in terms of delay and energy consumption compared to the existing scheme.

Improvement of Transfer Alignment Performance for Airborne EOTS (항공용 전자광학추적장비의 전달정렬 성능 개선)

  • Kim, Minsoo;Lee, Dogeun;Jeong, Chiun;Jeong, Jihee
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-67
    • /
    • 2022
  • An Electro-Optical Tracking System (EOTS) is an electric optical system with EO/IR cameras, laser sensors, and an IMU. The EOTS calculates coordinates of targets, using attitude and acceleration measured by the IMU. In particular for an armed aircraft, the performance of the weapon system depends on how quickly and accurately it acquires the target coordinates. The IMU should be operated after alignment is complete, to meet the coordinate accuracy required by the weapon system so the initial stabilization time of the IMU should be reduced, by quickly measuring the attitude and acceleration. Alignment is the process of determining the initial attitude by resolving the attitude error of the IMU, and the IMU of mission equipment such as an airborne EOTS, uses velocity matching based on the velocity from GPS/INS for aircraft navigation. In this paper, a method is presented to improve the transfer alignment performance of the airborne EOTS, by maneuvering aircraft and the mission equipment. First, the performance factor of the alignment was identified, as a heading error through the velocity matching model and simulation results. Then acceleration maneuvers and attitude changes were necessary, to correct the error. As a result of flight tests applied to an EOTS on a OOO aircraft system, the transfer alignment performance was improved as the duration time was decreased, by more than five times when the aircraft accelerated by more than 0.2g and the EOTS was moving until 6.7deg/s.

A study on the MAC protocol for an aeronautical mobile data communication (항공용 이동 무선 데이터 통신에 적합한 매체접속제어 프로토콜에 관한 연구)

  • 이은주;박효달
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2604-2612
    • /
    • 1997
  • Media access control(MAC) protocol that is used between aircraft and ground station now is non-persistent CSMA protocol, but this protocol hs defects to apply in the wireless mobile radio communication environment. In this paper, to solve this Problems, the modified ICMA/CD protocol which ban be applied in the wireless environment was proposed and analyzed. In the modified ICMA/CD protocol, instead of usig special control channel, control signal was inserted into the uplink message. After the analysis, simulation was performed to approve the analysis resutls. As a results, modified ICMA/CD protocol can solve the hidden termined effect of CSMA protocol and packet detection delay time problem of ICMA/CD protocol and acquired the same channel throughput as CSMA/CD protocol. This results shows the modified ICMA/CD protocol can be used in the aeronauical telecommunication.

  • PDF

Realization of Aircraft Takeoff Systems Based on Voice Instructions (음성지시 기반 항공기 이륙 시스템의 구현)

  • Yang, Chung-Il;Jun, Byung-Kyu;Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.559-566
    • /
    • 2008
  • In this paper, we propose a voice instruction-based takeoff system for aircraft including unmanned aerial vehicle (UAV). The system consists of voice recognition (VR), flight state checking and instruction (command) execution. Employing VR technology, the proposed takeoff system can provide simplified and more reliable takeoff procedures to pilots. By virtue of the VR-based system it is expected that human errors during takeoff phase can be reduced and further navigation safety can be improved.

  • PDF

The Study of the Peer-to-Peer Communication System for a UAV Navigational Monitoring Using a HSDPA (HSDPA를 이용한 무인항공기 항법 모니터링용 Peer-to-Peer 통신 시스템 구현 연구)

  • Kim, Ho-Gyun;Song, Jun-Beom;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1025-1033
    • /
    • 2011
  • This paper presents a realization of a peer-to-peer communication system for a UAV navigational monitoring using a commercial HSDPA(High Speed Download Packet Access) mobile communication device. The realized system consists of a communication server, an air data terminal and multiple ground monitoring devices, where the server transfers navigational data from a UAV to multiple monitoring devices in real-time with commercial HSDPA modem. Through ground and flight tests, data were obtained to observe the realized system. Test results show that, depending on communicational environment, about 300msec delay, congestion and packet-loss between air data terminal and ground monitoring devices. Nevertheless, through high-speed long range test on a ground vehicle and altitude test with a UAV flight, the feasibility of a UAV navigational monitoring system was observed.

Numerical Analysis of Stall Characteristics for Turboprop Aircraft (터보프롭 항공기의 실속 특성 수치해석)

  • Park, Young Min;Chung, Jin Deog
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • Numerical simulations were performed to study the stall characteristics of turboprop aircraft. Stall characteristics were qualitatively investigated using the computational results of various configurations based on the combinations of propeller and high lift device. For the analysis of stall characteristics, three-dimensional Navier-Stokes solver with Spalart-Allmaras turbulence model was used and the relative motion between propeller and wing was simulated using sliding mesh technique. For the cruise configurations, major flow separation was occurred at the fuselage/wing fairing and the separation was reduced under propeller slipstream condition. For the high lift device configuration without propeller, major flow separation was occurred at the outboard side of nacelle. With rotating propeller, early stall onset due to low relative velocity and high effective angle of attack was observed on the outboard wing section. Regarding rotating direction of propeller, inboard-down direction was preferred due to the stall delay effect of propeller slipstream.

An Efficient On-the-fly Repairing System of Order Violation Errors for Health Management of Airborne Software (항공기 소프트웨어의 건전성 관리를 위해서 순서 위배 오류를 자율 수리하는 효율적인 시스템)

  • Kim, Tae-Hyung;Choi, Eu-Teum;Jun, Yong-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.821-829
    • /
    • 2020
  • Health management system of airborne software repairs runtime errors to provide safety and to reduce cost of maintenance. It is critical to on-the-fly repair order violation errors, because it is difficult to identify them at the development phase. Previous work, called Repairing Atomicity Violations (Repairing-AV) diagnoses order violations for each access event by comparing execution order of accesses. As a result, Repairing-AV has time overhead that is proportional to the number of access events to shared variable. This paper presents a tool called On-the-fly Repairing System (ORS) that can repair order violations of object methods containing access events. The ORS diagnoses order violations by using correct order of object methods, and treats them by stalling its thread where the error is about to occur. Experimentation with five synthetic programs shows that ORS is more efficient than Repairing-AV when the number of access events is greater than sixty.

Test development of a UAV equipped with a Fly-By-Wireless flight control system (무선네트워크 비행제어시스템을 탑재한 무인항공기의 시험개발)

  • Oh, Hyung Suk;Kim, Byung Wook;Lee, Si Hun;Nho, Won Ho;Kang, Seung Eun;Ko, Sang Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1039-1047
    • /
    • 2017
  • This paper presents a test development of a Fly-By-Wireless flight control system for a fixed-wing unmanned aerial vehicle (UAV). Fly-By-Wireless system (FBWLS) refers to a system that uses a wireless network instead of a wired network to connect sensors and actuators with a flight control computer (FCC), reducing considerable amount of wires. FBWLS enables to design a much lighter aircraft along with decreased maintenance time and cost. In this research we developed a Zigbee-based FWBLS UAV in which sensors (GPS and AHRS) are wirelessly connected via a FCC to aileron and elevator servo motors. In order to see the effect of time delay due to wireless signal on the flight stability of the UAV, several flight tests were conducted. From the tests, it was confirmed that the effect is minor by comparing the flight response of the FBWLS with the corresponding Fly-By-Wire system.

Network Modeling and Analysis of Multi Radar Data Fusion for Efficient Detection of Aircraft Position (효율적인 항공기 위치 파악을 위한 다중 레이더 자료 융합의 네트워크 모델링 및 분석)

  • Kim, Jin-Wook;Cho, Tae-Hwan;Choi, Sang-Bang;Park, Hyo-Dal
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • Data fusion techniques combine data from multiple radars and related information to achieve more accurate estimations than could be achieved by a single, independent radar. In this paper, we analyze delay and loss of packets to be processed by multiple radar and minimize data processing interval from centralized data processing operation as fusing multiple radar data. Therefore, we model radar network about central data fusion, and analyze delay and loss of packets inside queues on assuming queues respectively as the M/M/1/K using NS-2. We confirmed average delay time, processing fused multiple radar data, through the analysis data. And then, this delay time can be used as a reference time for radar data latency in fusion center.