• Title/Summary/Keyword: 합성 제올라이트

Search Result 248, Processing Time 0.021 seconds

Effect of the pH Value of Seed Coating Solution on Microstructure of Silicalite-1 Zeolite Separation Layer Grown on α-Alumina Support (종결정 코팅용액 pH 값이 α-알루미나 지지체 표면에 성장하는 Silicalite-1 제올라이트 분리층의 미세구조에 미치는 영향)

  • Hu, Sigui;Kim, Min-Zy;Lee, Du-Hyoung;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.422-430
    • /
    • 2015
  • The present study announces that the pH value of seed coating solution makes a significant effect on the microstructure of silicalite-1 zeolite layer formed on ${\alpha}$-alumina support. Seed with an average diameter of 75 nm was dispersed in ethanol to prepare three kinds of seed coating solutions with different pH values, and dip-coated on the support. The pH value was controlled to be 2.2, 7.0, and 9.3, respectively. In the secondary growth process, pH 7 seed solution resulted an uniform, 3 to $4{\mu}m$ thick, completely covered, and 100 nm grained silicalite-1 zeolite separation layer. The uniformity and completeness were explained by a uniform, closely packed, multi-layered, and completely covered seed coating in the pH 7 condition. In the condition, ${\alpha}$-alumina support and seed are oppositely charged: support is positively charged (8.4 mV) and seed, negatively (-1.7 mV). The opposite charging induced a strong electrostatic attraction between seed and support, which made the good seed coating state. On the other hand, pH 2.2 and pH 9.3 seed solutions resulted non-uniform, partially covered, and around $1{\mu}m$ grained zeolite separation layer, since seed and support are the same sign charged in the conditions. The same sign charging induced a strong electrostatic repulsion between seed and support which caused a low coverage of seed. It could be concluded that the pH value of seed coating solution is a key parameter to determine the microstructure of silicalite-1 zeolite separation layer.

Synthesis of Borosilicate Zeotypes by Steam-assisted Conversion Method (수증기 쪼임법에 의한 제올라이트형 보로실리케이트 제조방법)

  • Mansour, R.;Lafjah, M.;Djafri, F.;Bengueddach, A.
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.178-185
    • /
    • 2007
  • Intermediate pentasil borosilicate zeolite-like materials have been crystallized by a novel method named steam-assisted conversion, which involves vapor-phase transport of water. Indeed, amorphous powders obtained by drying Na2O.SiO2.B2O3.TBA2O gels of various compositions using different boron sources are transformed into crystalline borosilicate zeolite belonging to pentasil family structure by contact with vapors of water under hydrothermal conditions. Using a variant of this method, a new material which has an intermediate structure of MFI/MEL in the ratio 90:10 was crystallized. The results show that steam and sufficiently high pH in the reacting hydrous solid are necessary for the crystallization to proceed. Characterization of the products shows some specific structural aspects which may have its unique catalytic properties. X-ray diffraction patterns of these microporous crystalline borosilicates are subjected to investigation, then, it is shown that the product structure has good crystallinity and is interpreted in terms of regular stacking of pentasil layers correlated by inversion centers (MFI structure) but interrupted by faults consisting of mirror-related layers (MEL structure). The products are also characterized by nitrogen adsorption at 77 K that shows higher microporous volume (0.160 cc/g) than that of pure MFI phase (0.119 cc/g). The obtained materials revealed high surface area (~600 m2/g). The infrared spectrum reveals the presence of an absorption band at 900.75 cm-1 indicating the incorporation of boron in tetrahedral sites in the silicate matrix of the crystalline phase.

Pervaporation Characteristics of Water/Ethanol and Water/Isopropyl Alcohol Mixtures through Zeolite 4A Membranes: Activity Coefficient Model and Maxwell Stefan Model (제올라이트 4A 분리막을 이용한 물/에탄올, 물/이소프로필알코올 혼합물의 투과증발 특성 연구 : 활동도계수모형 및 Generalized Maxwell Stefan 모형)

  • Oh, Woong Jin;Jung, Jae-Chil;Lee, Jung Hyun;Yeo, Jeong-gu;Lee, Da Hun;Park, Young Cheol;Kim, Hyunuk;Lee, Dong-Ho;Cho, Churl-Hee;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.239-248
    • /
    • 2018
  • In this study, pervaporation experiments of water, ethanol and IPA (Isopropyl alcohol) single components and water/ethanol, water/IPA mixtures were carried out using zeolite 4A membranes developed by Fine Tech Co. Ltd. Those membranes were fabricated by hydrothermal synthesis (growth in hydrothermal condition) after uniformly dispersing the zeolite seeds on the tubular alumina supports. They have a pore size of about $4{\AA}$ by ion exchange of $Na^+$ to the LTA structure with Si/Al ratio of 1.0, and shows strong hydrophilic property. Physical characteristics of prepared membranes were evaluated by using SEM (surface morphology), porosimetry (macro- or meso- pore analysis), BET (micropore analysis), and load tester (compressive strength). Pervaporation experiments with various temperature and concentration conditions confirmed that the zeolite 4A membrane can selectively separate water from ethanol and IPA. Water/ethanol separation factor was over 3,000 and water/IPA separation factor was over 1,500 (50 : 50 wt%, initial feed concentration). Pervaporation behaviors of single components and binary mixtures were predicted using ACM (activity coefficient model), GMS (generalized Maxwell Stefan) model and DGM (Dusty Gas Model). The adsorption and diffusion coefficients of the zeolite top layer were obtained by parameter estimation using GA (Genetic Algorithm, stochastic optimization method). All the calculations were carried out using MATLAB 2018a version.

NaY Zeolite Membrane Pervaporation for Dehydration from Ethylacetate Manufacturing Process (에틸아세테이트 생산 공정의 탈수를 위한 NaY 제올라이트 분리막 투과증발)

  • Ahn, Hyoseong;Lee, Hyeryeon;Lee, Yongtaek
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.366-370
    • /
    • 2005
  • Pervaporation process using a NaY zeolite membrane was applied for separation of water generated in an esterification process as a byproduct. From the binary mixture of water and either ethyl acetate or acetic acid and the ternary mixture of water, ethanol and ethyl acetate which might be present in an esterification reaction for manufacturing ethyl acetate, water was separated by the membrane pervaporation. It was investigated how the operating parameters such as an organic concentration and a temperature affected the permeate flux and the separation factor of water. For the feed mixture of water/ethyl acetate, the total flux and the separation factor of water were observed to be $930-5,000g/m^2/hr$ and 3,700-8,000, respectively. Also it was found for ternary mixtures of water/ethanol/ethyl acetate that the total flux was $1,300-3,900g/m^2/hr$ and the separation factor was 530-1,600. A pervaporation process might be applied in an esterification process since both the total flux and the separation factor of water through the NaY zeolite membrane were shown to be very high.

Pervaporation of Butanol from their Aqueous Solution using a PDMS-Zeolite Composite Membrane (PDMS-Zeolite 복합막을 이용한 부탄올 투과증발)

  • Kong, Chang-In;Cho, Moon-Hee;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.816-822
    • /
    • 2011
  • Pervaporation is known to be a low energy consumption process since it needs only an electric power to maintain the permeate side in vacuum. Also, the pervaporation is an environmentally clean technology because it does not use the third material such as an entrainer for either an azeotropic distillation or an extractive distillation. In this study, Silicalite-1 particles are hydrothermally synthesized and polydimethylsiloxane(PDMS)-zeolite composite membranes are prepared with a mixture of synthesized Silicalite-1 particles and PDMS-polymer. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the weight % of Silicalite-1 particles in the membrane. A 1,000 $cm^3$ aqueous solution containing butanol of low mole fraction such as order of 0.001 was used as a feed to the membrane cell while the pressure of the permeation side was kept about 0.2~0.3 torr. When the butanol concentration in the feed solution was 0.015 mole fraction, the flux of n-butanol significantly increased from 14.5 g/ $m^2$/hr to 186.3 g/$m^2$/hr as the Silicalite-1 content increased from 0 wt% to 10 wt%, indicating that the Silicalite-1 molecular sieve improved the membrane permselectivity from 4.8 to 11.8 due to its unique crystalline microporous structure and its strong hydrophobicity. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.07 to 0.15 mole fraction. This composite membrane could be potentially appliable for separation of n-butanol from insitu fermentation broth where n-butanol is produced at a fairly low concentration of 0.015 mole fraction.

A Review of Domestic Research Trends of Fischer-Tropsch for the Production of Light Hydrocarbons and Middle Distillates From Syngas (합성가스로부터 경질탄화수소 및 중산유분을 생산하기 위한 Fischer-Tropsch의 국내연구동향)

  • Kim, Jin-Ho;Kim, Hyo-Sik;Kim, Ji-Hyeon;Ryu, Jae-Hong;Kang, Suk-Hwan;Park, Myung-June
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.565-574
    • /
    • 2019
  • Fischer-Tropsch synthesis process is a typical method for synthesizing hydrocarbons from syngas and is mainly known as iron (Fe) and cobalt (Co) catalysts. Currently, some technologies such as CTL (Coal to Liquid) and GTL (Gas to Liquid) are operated on a commercial scale depending on the products, but the research to produce light hydrocarbons and middle distillates directly has not been commercialized. Therefore, in this study, domestic studies for direct production of light hydrocarbons and middle distillates are summarized and the effect of catalyst preparation, promoter addition, zeolite combination on product selectivity is investigated.

Synthesis of Sodalite from Water Glass: Effect of the Composition of Synthetic Mixtures on Its Crystallinity and Crystallite Size (물유리에서 소달라이트의 합성: 합성모액 조성이 결정화도와 입자 크기에 미치는 영향)

  • Bae, Song Eun;Seo, Gon;Song, Mee Kyung;No, Kyoung Tai
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.424-429
    • /
    • 2009
  • The effects of $Na_2O$, $SiO_2$ and $H_2O$ contents of the synthetic mixtures prepared from water glass on the crystallinity and crystallite size of sodalite were studied. The composition of the synthetic mixtures described by $x\;Na_2O{\cdot}y\;SiO_2{\cdot}Al_2O_3{\cdot}z\;H_2O$ was varied within x=2.5~7.5, y=1.4~3.0, z=140~400. The hydrothermal reaction was carried out at $140^{\circ}C$ for 2 days. High content of $Na_2O$ resulted in the high crystallinity and small crystallite of sodalite. The $SiO_2/Al_2O_3$ molar ratios of around 2 were suitable for the synthesis of sodalite, and produced zeolite species were varied by the $H_2O$ content. Sodalite was mainly obtained with a high crystallinity from the synthetic mixtures with $SiO_2/Al_2O_3$ molar ratio of around 2 and high content of $Na_2O$. The high content of sodium ions caused a decrease in the particle sizes because of their role of structure directing agent.

Cu and Zn Ions Adsorption Properties at Various pH with a Synthetic Zeolite (합성 제올라이트를 이용한 pH에 따른 Cu와 Zn 이온의 흡착특성)

  • Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.805-813
    • /
    • 2012
  • The removal property of Cu and Zn ions by chemical precipitation and adsorption using zeolite(Z-C1) prepared from coal fly ash(CFA) were evaluated in this study. Adsorption kinetic and equilibrium mechanisms described to analyze parameters and correlation factors with Lagergen $1^{st}$ and $2^{nd}$ order model and Langmuir and Freundlich model. Analysis of adsorption kinetics data revealed that the pseudo $2^{nd}$ order kinetics mechanism was predominant. The equilibrium data in pH 3 - 5 were able to be fitted well to a Langmuir model, by which the maximum adsorption capacities($q_{max}$) were determined at 124.9 - 140.1 mg $Cu^{2+}/g$ and 153.2 - 166.9 mg $Zn^{2+}/g$, respectively. We found that Z-C1 has a potential application as absorbents in metal ion recovery with low pH.

Development of Synthetic Zeolites from Scoria for Pesticides Removal in the Golf Course (송이로부터 골프장 농약 제거를 위한 합성 제올라이트의 개발)

  • 감상규;안병준;주창식;이민규
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.451-459
    • /
    • 2001
  • Adsorption characteristics of triadimefon and diniconazole(pesticide) by natural zeolite($CLI_N$) and several synthetic zeolites were Investigated. The synthetic zeolites used En this study were as follows: Faujasite synthesized from coal fly ash($FAU_F$); Zeolite synthesized from the mixture of FAU and Na-Pl synthesized from the ratio of Cheju scoria 6 to coal fly ash 4 by weight($(FAU + Na-Pl)_{SF}$); waste fluid catalytic cracking catalyst($FCC_W$). The distribution coefficient, $K_D$ and Freundlich constant, $K_F$ decreased in the fellowing sequence : $FCC_W > FAU_F > (FAU + Na-Pl)_{SF} >CLI_N$ among the zeolites. The distribution coefficient and the adsorption capacity of $(FAU + Na-Pl)_{SF}$ for pesticides were 4.4 and 2.6 times higher for triamefon, and 2.0 and 2.4 times higher for diniconazole than those of $CLI_N$, respectively.

  • PDF

Characteristic of $Ca^{2+}$ Ion Exchange by the Synthesized Zeolite 4A from Fly ash (비산회로부터 합성한 제올라이트의 4A의 칼슘 이온교환 특성)

  • 연익준;주소영;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.165-171
    • /
    • 1999
  • A study on the synthesis of zeolite 4A using the bituminous coal fly ash from power plant was carried out. This study aims to investigate possibility for detergent builder with synthesized zeolite. It was examined at the crystallization conditions of atmospheric pressure and that of pressurization. The synthesized zeolite was proved to be Zeolite 4A type by means of the XRD and SEM analysis, and then the synthesized zeolite was used as an absorbent the remove the $Ca^{2+}$ ions in the water. In this study, commercial zeolite and synthesized zeolite reached equilibrium within 10 and 30 minutes respectively. The amount of $Ca^{2+}$ ions exchanged by the commercial zeolite, atmospheric pressure zeolite (zeolite A) and pressurized zeolite(zeolite PA) were 391mg/L(as $CaCO_3$), 323mg/L(as $CaCO_3$) and 355mg/L(as $CaCO_3$) respectively.

  • PDF