활동기반 모델은 현대의 복잡한 개인의 통행행태를 반영한 정교한 기반의 수요예측이 가능하지만, 분석 대상지의 상세한 인구정보가 필수적으로 요구된다. 최근 다양한 심층생성 모델을 활용한 합성인구 생성 기법이 개발되었고, 설문조사를 통해 수집된 샘플 데이터에 존재하지 않는 실제 인구와 유사한 인구 특성을 모사한 데이터를 생성해내는 방법론이 제시되었다. 이는 이산형으로 이루어진 샘플 데이터를 연속형 데이터로 변환하여 분포 영역을 정의한 뒤 생성된 표본 데이터의 거리를 정교하게 계산하여, 불가능한 인구 특성 조합을 억제하는 방식으로 데이터의 확률 분포를 학습한다. 하지만 데이터 변환 과정에 활용되는 개체 임베딩이 잘 학습되지 않으면 의도와 다르게 왜곡된 연속형 분포 영역이 정의될 수 있고, 원본 데이터 표현의 오류로 인한 잘못된 합성인구를 생성할 가능성이 존재한다. 따라서 본 연구에서는 정확도 높은 임베딩을 추출하여 간접적으로 합성인구 생성 성능을 증가시키고자 한다. 결과적으로 합성인구의 다양성과 정확성 측면에서 기존 대비 약 28.87% 성능이 향상하였다.
자기 지도 학습을 이용한 이상 탐지는 일반적으로 합성 데이터를 생성해 정상과 이상을 학습하고, 실제 이상 데이터를 테스트 데이터로 사용하여 이상 탐지 성능을 측정한다. 정상 데이터와 유사한 합성 데이터를 생성하기 위해 기존 연구에서는 원본 이미지에서 특정 패치를 자르고 붙이는 식으로 합성 데이터를 생성한다. 이런 방식에서 정상 데이터와 유사한 정도는 패치 개수와 크기에 따라 달라지므로 이상 탐지 성능에 영향을 미칠 수 있다. 본 연구에서는 패치 크기 및 개수를 다르게 하여 합성 데이터를 생성한 뒤 사전 학습된 모델을 사용하여 정상 데이터와의 유사성 측정 및 분석을 진행하였고 모델을 학습시켜 이상 탐지 성능을 측정하여 보았다.
기존의 자기지도 학습 기반의 CutPaste 기법은 정상 이미지에서 특정 패치를 자르고 붙이는 방법으로 합성 데이터를 생성한 뒤 이상탐지를 수행하였다. 그러나 이런 방식으로 생성된 합성데이터는 패치의 경계에 뚜렷한 차이가 나타나는 문제가 발생된다. 이러한 문제를 해결하기 위한 NSA 기법은 Poisson Blending을 통해 자연스러운 합성 데이터를 생성하여 더 높은 이상탐지 성능을 달성하였다. 그러나 NSA 기법은 클래스마다 조정해야하는 하이퍼 파라미터가 많은 단점을 가지고 있다. 본 논문에서는 합성 패치의 크기를 매우 작게 하는 단순한 방법으로 정상과 유사한 합성 데이터를 생성하였다. 이 때 패치가 매우 지역적으로 합성되기 때문에, 지역적인 특징을 학습하는 모델을 사용하면 합성 데이터에 쉽게 과적합 될 수 있다. 따라서 전역적인 특징을 학습하는 gMLP를 사용하여 이상탐지를 수행하였고, 단순한 합성 방법으로도 기존 자기 지도 학습 기법보다 더 높은 성능을 달성할 수 있었다.
딥러닝을 포함한 머신러닝 기법을 기반으로 비행체의 궤적 설계, 제어, 최적화, 예측 등의 작업을 수행하기 위해서는 일정한 양 이상의 비행체 궤적 데이터를 필요로 한다. 그러나 다양한 이유(예를 들어 비행체 궤적 데이터셋 구축에 필요한 비용, 시간, 인력 등)로 일정한 양 이상의 비행체 궤적 데이터를 확보하기 어려운 경우가 존재한다. 이러한 경우 합성 데이터 생성이 머신러닝을 가능하게 하는 방법 중 하나가 될 수 있다. 본 논문에서는 이와 같은 가능성을 탐구하기 위하여 시계열 생성적 적대 신경망을 이용하여 비행체 궤적 합성 데이터를 생성하고 평가하였다. 또한 비행체의 상태를 인식하기 위한 비행체 궤적 예측 작업에서 합성 데이터의 활용 가능성을 탐구하기 위하여 다양한 ablation study(비교 실험)를 수행하였다. 본 논문에서 제시된 생성 평가 및 비교 실험 결과는 비행체 궤적 합성 데이터 생성 및 비행체 궤적 관련 작업에서 합성 데이터의 활용 가능성에 대한 연구를 수행하고자 하는 연구자들에게 실질적인 도움이 될 것으로 예상한다.
본 논문에서는 거품 입자를 활용하여 시뮬레이션 장면에 맞는 소리를 효율적으로 합성할 수 있는 기법을 제안한다. 물리 기반 시뮬레이션 환경에서 소리를 표현하는 대표적인 방법은 생성과 합성이다. 사운드 생성의 경우 시뮬레이션 장면마다 물리 기반 접근법을 사용하여 소리를 생성할 수 있는데 계산 시간과 재질 표현의 어려움으로 다양한 시뮬레이션 장면에 대한 소리를 만들어 내기에는 쉽지 않다. 사운드 합성의 경우 소리 데이터를 미리 구축해야 하는 사전 준비가 필요하지만, 한 번 구축하면 비슷한 장면에서는 같은 소리 데이터를 활용할 수 있는 점이 있다. 따라서 본 논문에서는 거품 시뮬레이션의 소리 합성을 위해 소리 데이터를 구축하고 거품 입자의 효율적인 군집화를 통해 계산 시간을 줄이면서 소리의 사실감은 개선할 수 있는 사운드 합성 기법을 제안한다.
본 연구에서는 기존의 동영상 합성 네트워크에 스타일 합성 네트워크를 접목시켜 동영상에 대한 스타일 합성의 한계점을 극복하고자 한다. 본 논문의 네트워크에서는 동영상 합성을 위해 스타일갠 학습을 통한 스타일 합성과 동영상 합성 네트워크를 통해 스타일 합성된 비디오를 생성하기 위해 네트워크를 학습시킨다. 인물의 시선이나 표정 등이 안정적으로 전이되기 어려운 점을 개선하기 위해 3차원 얼굴 복원기술을 적용하여 3차원 얼굴 정보를 이용하여 머리의 포즈와 시선, 표정 등의 중요한 특징을 제어한다. 더불어, 헤드투헤드++ 네트워크의 역동성, 입 모양, 이미지, 시선 처리에 대한 판별기를 각각 학습시켜 개연성과 일관성이 더욱 유지되는 안정적인 스타일 합성 비디오를 생성할 수 있다. 페이스 포렌식 데이터셋과 메트로폴리탄 얼굴 데이터셋을 이용하여 대상 얼굴의 일관된 움직임을 유지하면서 대상 비디오로 변환하여, 자기 얼굴에 대한 3차원 얼굴 정보를 이용한 비디오 합성을 통해 자연스러운 데이터를 생성하여 성능을 증가시킴을 확인했다.
본 논문은 인식이 어려운 조명 환경에도 강인한 seven-segment 문자 인식을 위해서, 영상 내에 다양한 조명 연출이 가능하도록 합성 데이터 셋을 생성하고 학습할 수 있는 OCR 방법을 제안한다. 기존 연구에서는 deblurring 과 같이 영상 이미지의 해상도를 높여 문자 인식의 정확도를 향상시키는 것에 초점을 두었으나, 여러 조명 환경에 대비할 수 있는 OCR 관련 연구들은 부족하다. 이를 해결하기 위해 본 논문에서는 문자가 포함된 자연스러운 배경 영상에, seven-segment 문자를 합성시킨 후 relighting 을 적용함으로써 실제 환경과 유사한 장면을 연출해 새로운 합성 데이터 셋을 생성한다. 그리고 생성된 데이터 셋을 딥러닝 기반 학습시켜 다양한 조명에도 강인한 문자 인식기를 만들고자 한다. 합성 데이터 셋의 사용여부와 일반적인 데이터 augmentation 기법의 사용 여부를 비교하여, 본 논문에서 제안한 방법의 효과를 확인할 수 있었다. 이를 통해서 seven-segment 문자 인식 뿐만 아니라, 다양한 문자에 대해서도 적용될 수 있는 초석이 될 것으로 기대된다.
딥러닝은 컴퓨터 비전의 상당한 발전을 기여했지만, 딥러닝 모델을 학습하려면 대규모 데이터 세트가 필요하다. 이를 해결하기 위해 데이터 증강 기술이 주목받고 있다. 본 논문에서는 객체 추출 바운딩 박스와 원본 이미지의 바운딩 박스를 결합하여 합성 데이터 생성기법을 제안한다. 원본 이미지와 동일한 범주의 데이터셋에서 참조 이미지의 객체를 추출한 다음 생성 모델을 사용하여 참조 이미지와 원본 이미지의 특징을 통합하여 새로운 합성 이미지를 만든다. 실험을 통해, 생성 기법을 통한 딥러닝 모델의 성능향상을 보여준다.
본 논문은 자동 음소 분할기의 음소 경계 오류를 보상하기 위한 후처리 (Postprocessing)에 관한 연구이다. 이는 현재 음성 합성을 위한 음성/언어학적 연구, 운율 모델링, 합성단위 자동 생성 연구 등에 대량의 음소 단위 분절과 음소 레이블링된 데이터의 필요성에 따른 연구의 일환이다. 특히 수작업에 의한 분절 및 레이블링은 일관성의 유지가 어렵고 긴 시간이 소요되므로 자동 분절 기술이 더욱 중요시 되고 있다. 따라서, 본 논문은 자동 분절 경계의 오류 범위를 줄일 수 있는 후처리기를 제안하여 자동 분절 결과를 직접 합성 단위로 사용할 수 있고 대량의 합성용 운율 데이터 베이스 구축에 유용함을 기술한다. 제안된 후처리기는 수작업으로 조정된 데이터의 특징 벡터를 다층 신경회로망 (MLP:Multi-layer perceptron)을 통해 학습을 한 후, ETRI(Electronics and Telecommunication Research Institute)에서 개발된 음성 언어 번역 시스템을 이용한 자동 분절 결과와 후처리기인 MLP를 이용하여 새로운 음소 경계를 추출한다. 고립단어로 발성된 합성 데이터베이스에서 후처리기로 보정된 분절 결과는 음성 언어 번역 시스템의 분할율보 다 약 25%의 향상된 성능을 보였으며, 절대 오류(|Hand label position-Auto label position |)는 약 39%가 향상되었다. 이는 MLP를 이용한 후처리기로 자동 분절 오류의 범위를 줄 일 수 있고, 대량의 합성용 운율 데이터 베이스 구축 및 합성 단위의 자동생성에 이용될 수 있음을 보이는 것이다.
합성곱 신경망을 비롯하여 딥러닝 신경망의 학습에서 많은 양의 훈련데이터의 확보는 과적합 현상을 피하고 우수한 성능을 가지기 위해서 매우 중요하다. 하지만, 딥러닝 신경망에서의 레이블화된 훈련데이터의 확보는 실제로는 매우 제한적이다. 이를 극복하기 위해, 이미 획득한 훈련데이터를 변형, 조작 등으로 추가로 훈련데이터를 생성하는 여러 증강 방법이 제안되었다. 하지만, 이미지, 문자 등의 훈련데이터와 달리, 인간 동작 인식을 행하는 합성곱 신경망의 생체신호 훈련데이터를 추가로 생성하는 증강 방법은 연구 문헌에서 찾아보기 어렵다. 본 연구에서는 합성곱 신경망에 기반한 인간 동작 인식을 위한 생체신호 훈련데이터를 생성하는 간편하지만, 효과적인 증강 방법을 제안한다. 본 연구의 제안된 증강 방법의 유용성은 추가로 생성된 생체신호 훈련데이터로 학습하여 합성곱 신경망이 인간 동작을 높은 정확도로 인식하는 것을 보임으로써 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.