• 제목/요약/키워드: 합성데이터 생성

검색결과 323건 처리시간 0.024초

심층 생성모델 기반 합성인구 생성 성능 향상을 위한 개체 임베딩 분석연구 (Entity Embeddings for Enhancing Feasible and Diverse Population Synthesis in a Deep Generative Models)

  • 권동현;오태호;유승모;강희찬
    • 한국ITS학회 논문지
    • /
    • 제22권6호
    • /
    • pp.17-31
    • /
    • 2023
  • 활동기반 모델은 현대의 복잡한 개인의 통행행태를 반영한 정교한 기반의 수요예측이 가능하지만, 분석 대상지의 상세한 인구정보가 필수적으로 요구된다. 최근 다양한 심층생성 모델을 활용한 합성인구 생성 기법이 개발되었고, 설문조사를 통해 수집된 샘플 데이터에 존재하지 않는 실제 인구와 유사한 인구 특성을 모사한 데이터를 생성해내는 방법론이 제시되었다. 이는 이산형으로 이루어진 샘플 데이터를 연속형 데이터로 변환하여 분포 영역을 정의한 뒤 생성된 표본 데이터의 거리를 정교하게 계산하여, 불가능한 인구 특성 조합을 억제하는 방식으로 데이터의 확률 분포를 학습한다. 하지만 데이터 변환 과정에 활용되는 개체 임베딩이 잘 학습되지 않으면 의도와 다르게 왜곡된 연속형 분포 영역이 정의될 수 있고, 원본 데이터 표현의 오류로 인한 잘못된 합성인구를 생성할 가능성이 존재한다. 따라서 본 연구에서는 정확도 높은 임베딩을 추출하여 간접적으로 합성인구 생성 성능을 증가시키고자 한다. 결과적으로 합성인구의 다양성과 정확성 측면에서 기존 대비 약 28.87% 성능이 향상하였다.

이상 탐지를 위한 합성 데이터 생성 및 성능 분석 (Synthetic Data Generation and Performance Analysis for Anomaly Detection)

  • 황주효;진교홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.19-21
    • /
    • 2022
  • 자기 지도 학습을 이용한 이상 탐지는 일반적으로 합성 데이터를 생성해 정상과 이상을 학습하고, 실제 이상 데이터를 테스트 데이터로 사용하여 이상 탐지 성능을 측정한다. 정상 데이터와 유사한 합성 데이터를 생성하기 위해 기존 연구에서는 원본 이미지에서 특정 패치를 자르고 붙이는 식으로 합성 데이터를 생성한다. 이런 방식에서 정상 데이터와 유사한 정도는 패치 개수와 크기에 따라 달라지므로 이상 탐지 성능에 영향을 미칠 수 있다. 본 연구에서는 패치 크기 및 개수를 다르게 하여 합성 데이터를 생성한 뒤 사전 학습된 모델을 사용하여 정상 데이터와의 유사성 측정 및 분석을 진행하였고 모델을 학습시켜 이상 탐지 성능을 측정하여 보았다.

  • PDF

단순한 합성데이터 생성 방식을 활용한 gMLP 기반 자기 지도 학습 이상탐지 기법 (gMLP-based Self-Supervised Learning Anomaly Detection using a Simple Synthetic Data Generation Method)

  • 황주효;진교홍
    • 한국정보통신학회논문지
    • /
    • 제27권1호
    • /
    • pp.8-14
    • /
    • 2023
  • 기존의 자기지도 학습 기반의 CutPaste 기법은 정상 이미지에서 특정 패치를 자르고 붙이는 방법으로 합성 데이터를 생성한 뒤 이상탐지를 수행하였다. 그러나 이런 방식으로 생성된 합성데이터는 패치의 경계에 뚜렷한 차이가 나타나는 문제가 발생된다. 이러한 문제를 해결하기 위한 NSA 기법은 Poisson Blending을 통해 자연스러운 합성 데이터를 생성하여 더 높은 이상탐지 성능을 달성하였다. 그러나 NSA 기법은 클래스마다 조정해야하는 하이퍼 파라미터가 많은 단점을 가지고 있다. 본 논문에서는 합성 패치의 크기를 매우 작게 하는 단순한 방법으로 정상과 유사한 합성 데이터를 생성하였다. 이 때 패치가 매우 지역적으로 합성되기 때문에, 지역적인 특징을 학습하는 모델을 사용하면 합성 데이터에 쉽게 과적합 될 수 있다. 따라서 전역적인 특징을 학습하는 gMLP를 사용하여 이상탐지를 수행하였고, 단순한 합성 방법으로도 기존 자기 지도 학습 기법보다 더 높은 성능을 달성할 수 있었다.

시계열 생성적 적대 신경망을 이용한 비행체 궤적 합성 데이터 생성 및 비행체 궤적 예측에서의 활용에 관한 연구 (A Study on Synthetic Flight Vehicle Trajectory Data Generation Using Time-series Generative Adversarial Network and Its Application to Trajectory Prediction of Flight Vehicles)

  • 박인희;이창진;정찬호
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.766-769
    • /
    • 2021
  • 딥러닝을 포함한 머신러닝 기법을 기반으로 비행체의 궤적 설계, 제어, 최적화, 예측 등의 작업을 수행하기 위해서는 일정한 양 이상의 비행체 궤적 데이터를 필요로 한다. 그러나 다양한 이유(예를 들어 비행체 궤적 데이터셋 구축에 필요한 비용, 시간, 인력 등)로 일정한 양 이상의 비행체 궤적 데이터를 확보하기 어려운 경우가 존재한다. 이러한 경우 합성 데이터 생성이 머신러닝을 가능하게 하는 방법 중 하나가 될 수 있다. 본 논문에서는 이와 같은 가능성을 탐구하기 위하여 시계열 생성적 적대 신경망을 이용하여 비행체 궤적 합성 데이터를 생성하고 평가하였다. 또한 비행체의 상태를 인식하기 위한 비행체 궤적 예측 작업에서 합성 데이터의 활용 가능성을 탐구하기 위하여 다양한 ablation study(비교 실험)를 수행하였다. 본 논문에서 제시된 생성 평가 및 비교 실험 결과는 비행체 궤적 합성 데이터 생성 및 비행체 궤적 관련 작업에서 합성 데이터의 활용 가능성에 대한 연구를 수행하고자 하는 연구자들에게 실질적인 도움이 될 것으로 예상한다.

스크린드 군집화 기반의 사운드 합성을 이용한 효율적인 거품 사운드 생성 (Efficient Foam Sound Generation with Screened Clustering Based Sound Synthesis)

  • 신영찬;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.553-556
    • /
    • 2022
  • 본 논문에서는 거품 입자를 활용하여 시뮬레이션 장면에 맞는 소리를 효율적으로 합성할 수 있는 기법을 제안한다. 물리 기반 시뮬레이션 환경에서 소리를 표현하는 대표적인 방법은 생성과 합성이다. 사운드 생성의 경우 시뮬레이션 장면마다 물리 기반 접근법을 사용하여 소리를 생성할 수 있는데 계산 시간과 재질 표현의 어려움으로 다양한 시뮬레이션 장면에 대한 소리를 만들어 내기에는 쉽지 않다. 사운드 합성의 경우 소리 데이터를 미리 구축해야 하는 사전 준비가 필요하지만, 한 번 구축하면 비슷한 장면에서는 같은 소리 데이터를 활용할 수 있는 점이 있다. 따라서 본 논문에서는 거품 시뮬레이션의 소리 합성을 위해 소리 데이터를 구축하고 거품 입자의 효율적인 군집화를 통해 계산 시간을 줄이면서 소리의 사실감은 개선할 수 있는 사운드 합성 기법을 제안한다.

  • PDF

적대적 생성 신경망을 통한 얼굴 비디오 스타일 합성 연구 (Style Synthesis of Speech Videos Through Generative Adversarial Neural Networks)

  • 최희조;박구만
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권11호
    • /
    • pp.465-472
    • /
    • 2022
  • 본 연구에서는 기존의 동영상 합성 네트워크에 스타일 합성 네트워크를 접목시켜 동영상에 대한 스타일 합성의 한계점을 극복하고자 한다. 본 논문의 네트워크에서는 동영상 합성을 위해 스타일갠 학습을 통한 스타일 합성과 동영상 합성 네트워크를 통해 스타일 합성된 비디오를 생성하기 위해 네트워크를 학습시킨다. 인물의 시선이나 표정 등이 안정적으로 전이되기 어려운 점을 개선하기 위해 3차원 얼굴 복원기술을 적용하여 3차원 얼굴 정보를 이용하여 머리의 포즈와 시선, 표정 등의 중요한 특징을 제어한다. 더불어, 헤드투헤드++ 네트워크의 역동성, 입 모양, 이미지, 시선 처리에 대한 판별기를 각각 학습시켜 개연성과 일관성이 더욱 유지되는 안정적인 스타일 합성 비디오를 생성할 수 있다. 페이스 포렌식 데이터셋과 메트로폴리탄 얼굴 데이터셋을 이용하여 대상 얼굴의 일관된 움직임을 유지하면서 대상 비디오로 변환하여, 자기 얼굴에 대한 3차원 얼굴 정보를 이용한 비디오 합성을 통해 자연스러운 데이터를 생성하여 성능을 증가시킴을 확인했다.

다양한 조명 환경에 강인한 seven-segment OCR 방법 (Robust seven-segment OCR method for various illumination environments)

  • 김진성;노가은;남현길;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.235-238
    • /
    • 2022
  • 본 논문은 인식이 어려운 조명 환경에도 강인한 seven-segment 문자 인식을 위해서, 영상 내에 다양한 조명 연출이 가능하도록 합성 데이터 셋을 생성하고 학습할 수 있는 OCR 방법을 제안한다. 기존 연구에서는 deblurring 과 같이 영상 이미지의 해상도를 높여 문자 인식의 정확도를 향상시키는 것에 초점을 두었으나, 여러 조명 환경에 대비할 수 있는 OCR 관련 연구들은 부족하다. 이를 해결하기 위해 본 논문에서는 문자가 포함된 자연스러운 배경 영상에, seven-segment 문자를 합성시킨 후 relighting 을 적용함으로써 실제 환경과 유사한 장면을 연출해 새로운 합성 데이터 셋을 생성한다. 그리고 생성된 데이터 셋을 딥러닝 기반 학습시켜 다양한 조명에도 강인한 문자 인식기를 만들고자 한다. 합성 데이터 셋의 사용여부와 일반적인 데이터 augmentation 기법의 사용 여부를 비교하여, 본 논문에서 제안한 방법의 효과를 확인할 수 있었다. 이를 통해서 seven-segment 문자 인식 뿐만 아니라, 다양한 문자에 대해서도 적용될 수 있는 초석이 될 것으로 기대된다.

  • PDF

객체 바운딩 박스와 원본 이미지 결합을 이용한 합성 데이터 생성 기법 (Synthetic data generation technique using object bounding box and original image combination)

  • 이주혁;김미희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.476-478
    • /
    • 2023
  • 딥러닝은 컴퓨터 비전의 상당한 발전을 기여했지만, 딥러닝 모델을 학습하려면 대규모 데이터 세트가 필요하다. 이를 해결하기 위해 데이터 증강 기술이 주목받고 있다. 본 논문에서는 객체 추출 바운딩 박스와 원본 이미지의 바운딩 박스를 결합하여 합성 데이터 생성기법을 제안한다. 원본 이미지와 동일한 범주의 데이터셋에서 참조 이미지의 객체를 추출한 다음 생성 모델을 사용하여 참조 이미지와 원본 이미지의 특징을 통합하여 새로운 합성 이미지를 만든다. 실험을 통해, 생성 기법을 통한 딥러닝 모델의 성능향상을 보여준다.

합성단위 자동생성을 위한 자동 음소 분할기 후처리에 대한 연구 (The Postprocessor of Automatic Segmentation for Synthesis Unit Generation)

  • 박은영;김상훈;정재호
    • 한국음향학회지
    • /
    • 제17권7호
    • /
    • pp.50-56
    • /
    • 1998
  • 본 논문은 자동 음소 분할기의 음소 경계 오류를 보상하기 위한 후처리 (Postprocessing)에 관한 연구이다. 이는 현재 음성 합성을 위한 음성/언어학적 연구, 운율 모델링, 합성단위 자동 생성 연구 등에 대량의 음소 단위 분절과 음소 레이블링된 데이터의 필요성에 따른 연구의 일환이다. 특히 수작업에 의한 분절 및 레이블링은 일관성의 유지가 어렵고 긴 시간이 소요되므로 자동 분절 기술이 더욱 중요시 되고 있다. 따라서, 본 논문은 자동 분절 경계의 오류 범위를 줄일 수 있는 후처리기를 제안하여 자동 분절 결과를 직접 합성 단위로 사용할 수 있고 대량의 합성용 운율 데이터 베이스 구축에 유용함을 기술한다. 제안된 후처리기는 수작업으로 조정된 데이터의 특징 벡터를 다층 신경회로망 (MLP:Multi-layer perceptron)을 통해 학습을 한 후, ETRI(Electronics and Telecommunication Research Institute)에서 개발된 음성 언어 번역 시스템을 이용한 자동 분절 결과와 후처리기인 MLP를 이용하여 새로운 음소 경계를 추출한다. 고립단어로 발성된 합성 데이터베이스에서 후처리기로 보정된 분절 결과는 음성 언어 번역 시스템의 분할율보 다 약 25%의 향상된 성능을 보였으며, 절대 오류(|Hand label position-Auto label position |)는 약 39%가 향상되었다. 이는 MLP를 이용한 후처리기로 자동 분절 오류의 범위를 줄 일 수 있고, 대량의 합성용 운율 데이터 베이스 구축 및 합성 단위의 자동생성에 이용될 수 있음을 보이는 것이다.

  • PDF

CNN 기반 인간 동작 인식을 위한 생체신호 데이터의 증강 기법 (Bio-signal Data Augumentation Technique for CNN based Human Activity Recognition)

  • 게렐바트;권춘기
    • 융합신호처리학회논문지
    • /
    • 제24권2호
    • /
    • pp.90-96
    • /
    • 2023
  • 합성곱 신경망을 비롯하여 딥러닝 신경망의 학습에서 많은 양의 훈련데이터의 확보는 과적합 현상을 피하고 우수한 성능을 가지기 위해서 매우 중요하다. 하지만, 딥러닝 신경망에서의 레이블화된 훈련데이터의 확보는 실제로는 매우 제한적이다. 이를 극복하기 위해, 이미 획득한 훈련데이터를 변형, 조작 등으로 추가로 훈련데이터를 생성하는 여러 증강 방법이 제안되었다. 하지만, 이미지, 문자 등의 훈련데이터와 달리, 인간 동작 인식을 행하는 합성곱 신경망의 생체신호 훈련데이터를 추가로 생성하는 증강 방법은 연구 문헌에서 찾아보기 어렵다. 본 연구에서는 합성곱 신경망에 기반한 인간 동작 인식을 위한 생체신호 훈련데이터를 생성하는 간편하지만, 효과적인 증강 방법을 제안한다. 본 연구의 제안된 증강 방법의 유용성은 추가로 생성된 생체신호 훈련데이터로 학습하여 합성곱 신경망이 인간 동작을 높은 정확도로 인식하는 것을 보임으로써 검증하였다.