Acknowledgement
This work was supported by the Manufacturing Process Innovation Simulation Center Establishment Project funded by Ministry of the Trade, Industry & Energy(MOTIE, Korea).
References
- H. M. Schluter, J. Tan, B. Hou, and B. Kainz, "Natural Synthetic Anomalies for Self-Supervised Anomaly Detection and Localization." in Proceedings of Compute Vision-ECCV 2022, Tel Aviv, Israel, pp. 474-489, 2021. DOI: 10.1007/978-3-031-19821-2_27.
- C. -L. Li, K. Sohn, J. Yoon, and T. Pfister, "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization," in Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville: TN, USA, pp. 9659-9669, 2021. DOI: 10.1109/CVPR46437.2021.00954.
- J. Song, K. Kong, Y.-I. Park, S.-G. Kim, and S.-J. Kang, "AnoSeg: Anomaly Segmentation Network Using SelfSupervised Learning." arXiv:2110.03396, 2021.
- P. Perez, M. Gangnet, and A. Blake, "Poisson image editing," in Proceedings of ACM SIGGRAPH 2003 Papers on - SIGGRAPH '03, ACM Press, San Diego: CA, USA, pp. 313-318, 2003. DOI: 10.1145/1201775.882269.
- P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, "MVTec AD - A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection," in Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach: CA, USA, pp. 9584-9592, 2019. DOI: 10.1109/CVPR.2019.00982.
- H. Liu, Z. Dai, D. R. So, and Q. V. Le, "Pay Attention to MLPs," in Proceedings of NeurIPS 2021.
- O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," in Proceedings of Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, Munich, Germany, pp. 234-241, 2015. DOI: 10.1007/978-3-319-24574-4_28.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dhgha,ni, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," in Proceedings of ICLR 2021, Virtual, 2021.
- I. Tolstikhin, N. Houlsby, A. Kolesnikove, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, M. Lucic, and A. Dosovitskiy, "MLP-Mixer: An all-MLP Architecture for Vision," in Proceedings of NeurIPS2021, Virtual, 2021.