• Title/Summary/Keyword: 할당기

Search Result 411, Processing Time 0.021 seconds

Budgeted Memory Allocator for Embedded Systems (내장형 시스템을 위한 Budgeted 메모리 할당기)

  • Lee, Jung-Hee;Yi, Joon-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.61-70
    • /
    • 2008
  • Dynamic memory allocators are used for embedded systems to increase flexibility to manage unpredictable inputs and outputs. As embedded systems generally run continuously during their whole lifetime, fragmentation is one of important factors for designing the memory allocator. To minimize fragmentation, a budgeted memory allocator that has dedicated storage for predetermined objects is proposed. A budgeting method based on a mathematical analysis is also presented. Experimental results show that the size of the heap storage can be reduced by up to 49.5% by using the budgeted memory allocator instead of a state-of-the-art allocator. The reduced fragmentation compensates for the increased code size due to budgeted allocator when the heap storage is larger than 16KB.

Performance Analysis of Resource Allocation in Asymmetric dual-hop Communication System (비대칭 환경에서 듀얼홉 통신시스템의 자원할당 성능분석)

  • Woong Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.655-660
    • /
    • 2024
  • Relay has been applied various communication environments due to its advantages of performance enhancement in communication systems. In this paper, we analyze the performance of a dual-hop communication system which uses one relay by considering asymmetric communication scenarios. The performance is based on bit error rate. Firstly, we compare the overall performance of dual-hop communication system under symmetric and asymmetric, and then analyze the performance depending on the resource allocation. Energy allocation and relay location are considered in the resource allocation. The performance of overall system for each energy allocation and relay location is analyzed. In addition, we analyze the performance of communication system when both energy and relay location are considered simultaneously. Based on the analyzed performance, we discuss the effect of resource allocation for symmetric and asymmetric environments.

Effect of Resource Allocation in Differential Distributed Cooperative Networks with Mixed Signaling Scheme (혼합된 변조 방식을 적용한 차등 분산 협력 네트워크의 자원 할당 효과)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1131-1136
    • /
    • 2020
  • Cooperative networks enhance the performance of communication systems by combining received signals from the several relay nodes where the source node transmits signals to relay nodes. In this paper, we analyze the effect of resource allocation in cooperative networks. We assume that the cooperative networks use the conventional modulation scheme between the source and relay nodes, and adopt space-time code between the relays and destination node. Both the synchronous and differential modulations are applied for the conventional scheme and differential modulation is used for the space-time code. We consider relay location and energy allocation for resource allocation, and the performance of cooperative networks depending on the number of relay is also investigated.

A Label Assignment Scheme using F/T Classifier in MPLS (MPLS에서 F/T 분류기를 이용한 레이블 할당 방안)

  • Kim, Kwang-Su;Lee, Jae-Kee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.1483-1486
    • /
    • 2002
  • MPLS(Multiprotocol Label Switching)에서 레이블은 패킷의 스위칭에 사용되는 중요한 인자이다. 할당되는 레이블 수에 따라 MPLS 네트워크의 성능에 큰 영향을 미친다. 본 논문에서는 할당되는 레이블 수를 최소화하기 위해 F/T 분류기를 이용하는 방법을 제안하였다. 이 방법은 기존의 방법에 T 시간만큼을 더 경과한 후에 유입된 플로우들을 하나의 레이블로 할당하는 방법으로, 기존의 방법 보다 할당되는 레이블 수가 감소함을 네트워크 시뮬레이션을 이용한 실험으로 확인하였다.

  • PDF

UAV Network Resource Allocation Algorithm according to the Network Environment and Data Requirement (네트워크 환경 및 데이터 요구사항에 따른 무인기 네트워크 자원할당 알고리즘)

  • Cheon, Hye-Rim;Hwang, Chan-Ho;Lee, Woosin;Yoo, Indeok;Kim, Jae-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.3-11
    • /
    • 2017
  • UAV system has the limitation to allocate enough spectrum bandwidth for the operation of multiple UAVs due to the market expansion. In addition, the communication environment of UAV network varies dynamically due to the UAV's mobility. Thus, to operate the stable UAV system and maximize the transmission data rate, it needs to allocate the resource effectively in the limited bandwidth considering the given network environment. In this paper, we propose the resource allocation algorithm which can maximize the network throughput as well as satisfy the minimum data requirement for the UAV system operation in the given network environment based on TDMA(Time Division Multiple Access). By performance analysis, we show that the proposed algorithm can allocate the resource to satisfy the high network throughput as well as the minimum data requirement in the given network environment.

Control of a Satellite's Redundant Thrusters by a Control Allocation Method (여유 조종력 할당기법을 이용한 인공위성의 여유 추력기 제어)

  • Jin, Jae-Hyun;Park, Young-Woong;Park, Bong-Kyu;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.60-66
    • /
    • 2004
  • Redundant thrusters are generally adopted to satellite designs for a highly reliable attitude control system. So efficient redundancy management is required to take advantage of these redundant thrusters. In this paper, control allocation method is proposed as a method for controlling redundant thrusters. Control allocation is a method to calculate optimal distribution on redundant controls for realizing desired forces/torques. It is shown that a control allocation problem for redundant thrusters is formulated as a linear programming problem which minimizes fuel consumptions with thrusters, constraints. We also show that the proposed method is more efficient than an existing method by numerical examples.

Multi-UAV Mission Allocation and Optimization Technique Based on Discrete-Event Modeling and Simulation (이산 사건 모델링 및 시뮬레이션 기반의 다수 무인기 임무 할당 및 최적화 기법)

  • Lee, Dong Ho;Jang, Hwanchol;Kim, Sang-Hwan;Chang, Woohyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this paper, we propose a heterogenous mission allocation technique for multi-UAV system based on discrete event modeling. We model a series of heterogenous mission creation, mission allocation, UAV departure, mission completion, and UAV maintenance and repair process as a mathematical discrete event model. Based on the proposed model, we then optimize the number of UAVs required to operate in a given scenario. To validate the optimized number of UAVs, the simulations are executed repeatedly, and their results are analyzed. The proposed mission allocation technique can be used to efficiently utilize limited UAV resources, and allow the human operator to establish an optimal mission plan.

Distributed Task Assignment Algorithm for SEAD Mission of Heterogeneous UAVs Based on CBBA Algorithm (CBBA 기반 SEAD 임무를 위한 이종무인기의 분산형 임무할당 알고리듬 연구)

  • Lee, Chang-Hun;Moon, Gun-Hee;Yoo, Dong-Wan;Tahk, Min-Jea;Lee, In-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.988-996
    • /
    • 2012
  • This paper presents a distributed task assignment algorithm for the suppression of enemy air defense (SEAD) mission of heterogeneous UAVs, based on the consensus-based bundle algorithm (CBBA). SEAD mission can be modeled as a task assignment problem of multiple UAVs performing multiple air defense targets, and UAVs performing SEAD mission consist of the weasel for destruction of enemy's air defense system and the striker for the battle damage assessment (BDA) or other tasks. In this paper, a distributed task assignment algorithm considering path-planning in presence of terrain obstacle is developed for heterogeneous UAVs, and then it is applied to SEAD mission. Through numerical simulations the performance and the applicability of the proposed method are tested.

A Dynamic Optimum Time Allocation Method in Partial Relay Systems (부분 중계기 협력 다중화 기술에서 동적 최적 시간 할당 기술)

  • Cho, Jung-Il;Kwon, Yang-Soo;Kim, Nam-Ri;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.746-751
    • /
    • 2009
  • We propose a dynamic time allocation method in cooperative multiplexing with partial relaying system. This method uses a linear programming and considers protocol that is based on relaying of partial information bits followed by cooperative multiplexing. In this protocol, regardless of the location of relay, the allocation time for each transmission time slots are constant. Using a dynamic time allocation method with considering the location of relay, we can find optimal transmission time slots, and show that the system capacity is optimized.

Application for en-Route mission to Decentralized Task Allocation (경로가 주어진 임무 상황에서 분산 임무할당 알고리즘의 적용 방안 연구)

  • Kim, Sung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.156-161
    • /
    • 2020
  • In an environment that operates multiple UAVs, the use of a decentralized task allocation algorithm has more robustness from a single failure of UAV on the mission because there is no central command center. In addition, UAVs have situational awareness and redistribute tasks among themselves, which can expand the mission range. The use of multiple UAVs in a mission has increased as the agent hardware has decreased in size and cost. The decentralized mission-planning algorithm has the advantages of a larger mission range and robustness to a single failure during the mission. This paper extended the type of mission the uses CBBA, which is the most well-known decentralized task allocation algorithm, to the point mission and en-route mission. This will describe the real mission situation that has the purpose of surveillance. A Monte-Carlo simulation was conducted in the case of multiple agents in the task-rich environment, and the global rewards of each case were compared.