• Title/Summary/Keyword: 한국 지형학회

Search Result 7,562, Processing Time 0.035 seconds

Development of integrated disaster mapping method (I) : expansion and verification of grid-based model (통합 재해지도 작성 기법 개발(I) : 그리드 기반 모형의 확장 및 검증)

  • Park, Jun Hyung;Han, Kun-Yeun;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.71-84
    • /
    • 2022
  • The objective of this study is to develop a two-dimensional (2D) flood model that can perform accurate flood analysis with simple input data. The 2D flood inundation models currently used to create flood forecast maps require complex input data and grid generation tools. This sometimes requires a lot of time and effort for flood modeling, and there may be difficulties in constructing input data depending on the situation. In order to compensate for these shortcomings, in this study, a grid-based model that can derive accurate and rapid flood analysis by reflecting correct topography as simple input data was developed. The calculation efficiency was improved by extending the existing 2×2 sub-grid model to a 5×5. In order to examine the accuracy and applicability of the model, it was applied to the Gamcheon Basin where both urban and river flooding occurred due to Typhoon Rusa. For efficient flood analysis according to user's selection, flood wave propagation patterns, accuracy and execution time according to grid size and number of sub-grids were investigated. The developed model is expected to be highly useful for flood disaster mapping as it can present the results of flooding analysis for various situations, from the flood inundation map showing accurate flooding to the flood risk map showing only approximate flooding.

A Study to Provide Real-Time Freeway Precipitation Information Using C-ITS Based PVD (C-ITS 기반 PVD를 활용한 실시간 고속도로 강수정보 수집에 관한 연구)

  • Kim, Ho seon;Kim, Seoung bum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.133-146
    • /
    • 2021
  • Providing weather information on roads today means that the road weather conditions near weather observation points are presented to road managers and road users. These weather observation points are managed by the Korea Meteorological Administration. However, it is difficult to provide accurate weather information due to physical limitations such as the presence of precipitation collection points, distance to weather information provision roads, and the presence of mountains. Therefore, this study intends to perform a comparative analysis by time zone and administrative dong provided by the Meteorological Administration using the wiper information among the information contained in the PVD(Probe Vehicle Data) collected from the highway C-ITS project. As a result of the analysis it was possible to detect rainfall even in the event of local rainfall and rainfall over a long period of time and the higher the cumulative precipitation per hour, the higher the probability of coincidence. This study is meaningful because it used PVD to solve the limitations of the existing road weather information provision method and suggested utilization plan for PVD.

Analyzing Driving Behavior, Road Sign Attentiveness and Recognition with Eye Tracking Data (운전자 시각행태 및 주행행태 분석기반의 결빙주의표지 개발연구)

  • Lee, Ghang Shin;Lee, Dong Min;Hwang, Soon Cheon;Kwon, Wan Taeg
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.117-132
    • /
    • 2021
  • Due to the terrain in Korea, there are many road sections passing through mountainous areas. During the winter, there is a higher risk of traffic accidents, due to black ice caused by the lack of sunlight. Despite domestic road freezing safety measures, accidents caused by road freezing results in severe traffic accidents. Under these considerations, this study analyzed whether traffic safety signs that change in response to the external temperature help drivers recognize frozen road segments. The study was conducted through analysis of the effect of the signs on a driver's perspective. For the signs under development, out of the signs designed by experts, the sign design which received the highest visibility and effectiveness evaluation ratings from the general public was selected. The sign was implemented through Virtual Reality (VR) and installed on the right side of the road to analyze the effect on gazing and driving behavior. As a result of analyzing the driver's driving behavior, a speed reduction of about 7km/h or more was found in the sign section. Therefore, It was found that the existence of the sign had a strong relationship with the rate of the drivers' speed reduction.

3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.943-953
    • /
    • 2021
  • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.

Research on Attribute of Postdramatic Theatre from (2019) by Theater Group "Mul-Kyul" (극단 '물결'의 <밑바닥에서>(2019)에 나타난 포스트드라마 연극 특성 연구)

  • Ra, Kyung-Min
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.295-306
    • /
    • 2020
  • In 21st century, theater evolves into a complex aspects. Advanced visual media, such as photography and movies has brought crisis to theater's position, and that crisis led contemporary theater seek for distinctive strategy by repeatedly pondering over the format in which it can be more competitive than other arts. And postdramatic theatre is one of distinctive characteristics of this trend in contemporary theater. Among these flows, The aim of thesis is to study the phenomenon of postdramatic theatre and its practical application in the recently performed (2019) by Theater Group "Mul-Kyul". (2019) puts the body at the front, one of the features of the postdramatic theatre. When creating stage, or developing narratives, the process of characterization, or even highlighting dramatic themes, non-verbal focused theatrical expressions hold a dominant position over verbal expressions. Also, by combining various non-verbal elements like object, with body language, it builds a complex Scenography and creates a metaphorical expression. In this regards, I would like to classify the postdramatic theatre phenomenon shown in the (2019) into 'Disorganization of text through Scenography' and 'Collage of Body Language and Object' and consider its characteristics and meanings.

Application of land cover and soil information for improvement of HSPF modeling accuracy (HSPF 예측 정확도 제고를 위한 토지피복 및 토양 특성 자료의 활용)

  • Kang, Yooeun;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.823-833
    • /
    • 2022
  • This study aims to improve the runoff modeling accuracy of a basin using Hydrological Simulation Program-FORTRAN (HSPF) model by considering nonhomogeneous characteristics of a basin. By entering classified values according to the various types of land cover and soil to the parameters in HSPF-roughness coefficient (NSUR), infiltration (INFILT), and evapotranspiration (LZETP)- the heterogeneity of the Yongdam Dam basin was reflected in the model. The results were analyzed and compared with the one where the parameters were set as a single value throughout the basin. The flow rate and water quality simulation results showed improved results when classified parameters were used by land cover and soil type than when single values were used. The parameterization changed not only the flow rate, but also the composition ratio of each hydrologic components such as surface runoff, baseflow, and evapotranspiration, which shows the impact of the value set to a parameter on the entire hydrological process. This implies the importance of considering the heterogeneous characteristics of the land cover and soil of the basin when setting the parameters in a model.

Hiker Mobility Model and Mountain Distress Simulator for Location Estimation of Mountain Distress Victim (산악 조난자의 위치추정을 위한 이동성 모델 및 조난 시뮬레이터)

  • Kim, Hansol;Cho, Yongkyu;Jo, Changhyuk
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.55-61
    • /
    • 2022
  • Currently police and fire departments use a Network/Wifi/GPS based emergency location positioning system established by mobile carriers to directly link with the device of the people who request the rescue to accurately position the expected location in the call area. However in the case of mountain rescue it is difficult to rescue the victim in golden time because the location of the search area cannot be limited when the victim is located in a radio shadow area of the mountain or the device power is off and this situation become worse if victim fail to report 911 by himself due to the injury. In this paper, we are expected to solve the previous problem by propose the mobile telecommunication forensic simulator consist of time series of cell information, human mobility model which include some general and specific features (age, gender, behavioral characteristics of victim, etc.) and intelligent infer system. The results of analysis appear in heatmap of polygons on the map based on the probability of the expected location information of the victim. With this technology we are expected to contribute to rapid and accurate lifesaving by reducing the search area of rescue team.

A Study of Determinants of Video-on-Demand View : Focusing on the Correlation between COVID-19 and Movie Views (영화 VOD 시청 건수 결정요인 : 코로나 19와 영화 시청의 관계를 중심으로)

  • Hong, Jin-Woo;Ha, Ji-Hwang;Jo, Jee-Hyung
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.8
    • /
    • pp.117-130
    • /
    • 2021
  • The government's social distancing policy and concerns about COVID-19 are increasing restrictions on outdoor leisure activities. Based on the decrease in outdoor leisure activities and the increase in indoor leisure activities, The purpose of this study is to examine the correlation between the degree of new confirmed cases of COVID-19 and the number of VOD views. This study conducted a time series analysis for 348 days from February 18, 2020 to January 31, 2021. Data were collected from the number of daily VOD views provided by the Korean Film Council and the number of new confirmed cases of COVID-19 provided by the Korea Centers for Disease Control and Prevention. The analysis showed that the number of confirmed COVID-19 cases has a significantly positive effect on the number of daily movie VOD views at the 5% significance level. This results indicate that the more confirmed cases of COVID-10, the more people watch movie VOD as indoor leisure activities. While previous studies examined the relationship between the confirmed cases of COVID-19 and indoor leisure activities in general, this study tried to academically contribute by analyzing the impact on specific indoor leisure activities. The practical implications of this study are as follows. The results of this study show that efficient promotions are possible based on significant social issues, such as infectious diseases. According to the results, promotions that respond quickly to changes are more effective than long-term promotions considering the climate or seasons. Due to the limitations of the data, the current study was conducted based only on PPV, but future research should also consider various billing forms such as PPM and SVOD.

Evaluation of Structural Performance of RC Beam with Different Depths to Lap Splice Detail of SD700 Headed Bar (SD700 확대머리 철근의 겹침이음 상세를 적용한 단차가 있는 RC 보의 구조성능 평가)

  • Lee, Ji-Hyeong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.262-269
    • /
    • 2021
  • This paper conducts an evaluation of the structural performance of the lap splice detail of SD700 headed bar experiment for developing an RC beam with different depths joint details. The experiment variable is lap splice length, yield strength, and end anchorage of main reinforcements. For all specimens, a headed bar was applied to the main reinforcement of the beam with low depth (B2), and the beam with high depth (B1) was applied to the main reinforcement with two splice methods: straight headed bar and 90° hooked-headed bar. The experimental results were that specimens of applying SD500 and SD600 had the results of flexural fracture at the lap splice location, which maximum load was similar. For specimens of appling SD500, the 90° hooked-headed bar of B1, suppressed horizontal cracks in the lap splice section compared to the straight headed bar. Specimens of applying an SD 700 headed bar had the results of brittle anchorage failure. In addition, maximum load was increased with the lap splice length increasing. For specimens of applying SD700 headed bar, test for test maximum load/theoretical load for test development length/design development length were estimated to be 1.30~1.48 for the ACI 318-19 equation, and 1.14~1.30 for the KDS-2021 equation. Thus, ACI 318-19 equation had conservatively greater safety factors as estimated development lengththened.

A Study on the Design and Implementation of a Position Tracking System using Acceleration-Gyro Sensor Fusion

  • Jin-Gu, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2023
  • The Global Positioning System (GPS) was developed for military purposes and developed as it is today by opening civilian signals (GPS L1 frequency C/A signals). The current satellite orbits the earth about twice a day to measure the position, and receives more than 3 satellite signals (initially, 4 to calculate even the time error). The three-dimensional position of the ground receiver is determined using the data from the radio wave departure time to the radio wave Time of Arrival(TOA) of the received satellite signal through trilateration. In the case of navigation using GPS in recent years, a location error of 5 to 10 m usually occurs, and quite a lot of areas, such as apartments, indoors, tunnels, factory areas, and mountainous areas, exist as blind spots or neutralized areas outside the error range of GPS. Therefore, in order to acquire one's own location information in an area where GPS satellite signal reception is impossible, another method should be proposed. In this study, IMU(Inertial Measurement Unit) combined with an acceleration and gyro sensor and a geomagnetic sensor were used to design a system to enable location recognition even in terrain where GPS signal reception is impossible. A method to track the current position by calculating the instantaneous velocity value using a 9-DOF IMU and a geomagnetic sensor was studied, and its feasibility was verified through production and experimentation.