The Journal of Korean Institute of Communications and Information Sciences
/
v.22
no.8
/
pp.1782-1789
/
1997
Most systems that retrieve distributed information on the Internet have difficulties in retrieving relevant information for they are not able to reflect exact semantics on retrieval queries that usersrequest. In this paepr, we propose an automatic query expansion based on ter distribution which reflects semantics of retrieval term to emhance the performance of information retrieval. We computed weight, indicating its overal imoritance in the collection documents and user's query and we use LSI's SVD technique to measure the term distribution which appears similar to query. And also, we measure the similarity to compared numerical value with query terms. Also we researched the method to reduce additional terms automatically and evaluated the performance of the proposed method.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.76-81
/
2020
법률 전문 지식이 없는 사람들이 법률 정보 검색을 성공적으로 하기 위해서는 일반 용어를 검색하더라도 전문 용어가 사용된 법령정보가 검색되어야 한다. 하지만 현 판례 검색 시스템은 사용자 선호도 검색이 불가능하며, 일반 용어를 사용하여 검색하면 사용자가 원하는 전문 자료를 도출하는 데 어려움이 있다. 이에 본 논문에서는 일반용어가 사용된 질의문과 전문용어가 사용된 판례를 자동으로 연결해 주고자 하였다. 질의문과 연관된 판례를 자동으로 연결해 주기 위해 전문용어가 사용된 전문가 답변을 바탕으로 문서분류에 높은 성능을 보이는 Doc2Vec을 이용한다. Doc2Vec 문서 임베딩 기법을 이용하여 전문용어가 사용된 전문가 답변과 유사한 답변을 제안하여 비슷한 주제의 답변들끼리 분류하였다. 또한 전문가 답변과 유사도가 높은 판례를 제안하여 질의문에 해당하는 판례를 자동으로 연결하였다.
Journal of the Korean Society for information Management
/
v.29
no.2
/
pp.155-171
/
2012
In text categorization, core terms of an input document are hardly selected as classification features if they do not occur in a training document set. Besides, synonymous terms with the same concept are usually treated as different features. This study aims to improve text categorization performance by integrating synonyms into a single feature and by replacing input terms not in the training document set with the most similar term occurring in training documents using Wikipedia. For the selection of classification features, experiments were performed in various settings composed of three different conditions: the use of category information of non-training terms, the part of Wikipedia used for measuring term-term similarity, and the type of similarity measures. The categorization performance of a kNN classifier was improved by 0.35~1.85% in $F_1$ value in all the experimental settings when non-learning terms were replaced by the learning term with the highest similarity above the threshold value. Although the improvement ratio is not as high as expected, several semantic as well as structural devices of Wikipedia could be used for selecting more effective classification features.
In this paper, I raise an objection to "sensitivism" about "know", according to which knowledge ascription is sensitive to contexts of utterance or subjects. While Peter Unger once proposed insensitivism about "know" in terms of insensitivism with respect to absolute terms, David Lewis provided sensitivism about "know" in terms of sensitivism with respect to absolute terms, on the common ground that "know" belongs to a class of absolute terms. On the one hand, I object to Unger-style insensitivism about 'know,' for, I claim, we have reason to opt for sensitivism rather than insensitivism with respect to absolute terms in virtue of the maxim that I call "semantic razor." On the other hand, I also object to sensitivist approaches to "know," for, on reflection, there is such a deep difference between "know" and absolute terms (or, sensitive terms altogether) that "know" cannot be taken to sensitive to contexts as opposed to absolute terms (or, sensitive terms altogether). These claims jointly indicate that "know" should be thought of as an insensitive term even though sensitivism has enjoyed wide acceptance in many other cases.
Architectural history traces the changes in architecture through various traditions, regions, overarching stylistic trends, and dates. This study identified terminologies related to the proximity and frequency in the architectural history areas by text mining and association analysis. This study explored terminologies by investigating articles published in the "Journal of Architectural History", a sole journal for the architectural history studies. First, key terminologies that appeared frequently were extracted from paper that had titles, keywords, and abstracts. Then, we analyzed some typical and specific key terminologies that appear frequently and partially depending on the research areas. Finally, association analysis was used to find the frequent patterns in the key terminologies. This research can be used as fundamental data for understanding issues and trends in areas on the architectural history.
Ahjung Byun;Hyeoun-Ae Park;Byung-Kwan Seo;EunYong Lee;Hyeoneui Kim
Journal of Society of Preventive Korean Medicine
/
v.28
no.2
/
pp.85-97
/
2024
목적 : 본 연구는 한의약에서 사용하는 용어가 SNOMED CT로 매핑 가능한지 여부를 조사하고, 한의약 용어를 표현하기 위해 기존 SNOMED CT 온톨로지를 개선할 수 있는 방안을 제안하는 것을 목표로 하였다. 방법 : 선행 연구의 매핑 가이드라인에서 제시된 7단계 과정을 수정하여 활용하였다. 매핑의 목적 및 범위 정의, 용어 추출, 개념 추출, 매핑을 위한 소스 용어 작업, SNOMED CT 개념 검색, 매핑 관계 분류 및 매핑 검증의 과정을 수행하였다. 매핑의 목적은 한의약 임상 아이디어를 표현하는 표준 용어로서 SNOMED CT를 평가하는 것이고, 범위에는 편두통 환자 관리의 평가, 진단, 치료 및 예방을 포함하였다. 결과 : 총 546개의 용어가 추출되었다. 중복된 용어를 제거한 후, 271개의 개념이 SNOMED CT 매핑에 사용되었다. 이중 43.2%는 SNOMED CT 개념과 의미론적으로 동등하게 매핑되었고(117개 개념), 39.1%는 SNOMED CT 개념이 더 포괄적인 의미를 가지도록 매핑되었다(106개 개념). 상대적으로 포괄적인 의미를 가지는 SNOMED CT 개념에 매핑된 한의약 개념 106개 중 19개는 SNOMED CT 후조합을 이용하여 의미론적으로 동등하게 표현이 가능하였다. 나머지 17.7%의 한의약 개념은 SNOMED CT에 매핑할 수 없었다. 결론 : 본 연구는 한의약에서 사용되는 개념을 SNOMED CT에 매핑하여 한의약 용어를 표준화하였다. 연구 결과를 바탕으로, 한의약에서 사용되는 용어를 표준의료용어로 표현하기 위하여 SNOMED CT에 새로운 개념과 속성을 추가하는 것을 제안한다.
The Transactions of the Korea Information Processing Society
/
v.7
no.12
/
pp.3874-3884
/
2000
An information retrieval system has to retrieve all and only documents which are relevant to a user query, even if index terms and query terms are not matched exactly. However, term mismatches between index terms and qucry terms have been a serious obstacle to the enhancement of retrieval performance. In this paper, we discuss automatic term normalization between words in text corpora and their application to a Korean information retrieval system. We perform two types of term normalizations to alleviate semantic term mismatches: equivalence class and co-occurrence cluster. First, transliterations, spelling errors, and synonyms are normalized into equivalence classes bv using contextual similarity. Second, context-based terms are normalized by using a combination of mutual information and word context to establish word similarities. Next, unsupervised clustering is done by using K-means algorithm and co-occurrence clusters are identified. In this paper, these normalized term products are used in the query expansion to alleviate semantic tem1 mismatches. In other words, we utilize two kinds of tcrm normalizations, equivalence class and co-occurrence cluster, to expand user's queries with new tcrms, in an attempt to make user's queries more comprehensive (adding transliterations) or more specific (adding spc'Cializationsl. For query expansion, we employ two complementary methods: term suggestion and term relevance feedback. The experimental results show that our proposed system can alleviatl' semantic term mismatches and can also provide the appropriate similarity measurements. As a result, we know that our system can improve the rctrieval efficiency of the information retrieval system.
It is highly useful in an actual clinical setting to apply appropriate medical terms to every area of electronic medical record (EMR) and link them effectively, as a single medical terminology system cannot cover all medical concepts. In order to use standardized terms conveniently and efficiently, it is required to categorize them depending on the purpose of individual departments or physicians and thereby develop organized subsets of extracted terms highly likely to be used. In addition, it is important to such a subset to make it possible to change or correct standardized terminology system and continue to develop and upgrade to meet renewed demands of users. In this paper, data including chief compliant, symptoms, diagnosis, operation, and history of previous treatments were collected from discharge summary of patients with Department of Neurosurgery at Busan National University Hospital for analysis. In addition, subset database was created, and for terms needed to be added, the physician directly performed mapping through connection with reference terminology server and developed subset editor for the purpose of creating new subset database. Therefore, it is expected that this can serve as a practical and effective management method to reduce problems and inefficiency caused by existing vast terminology system.
The purpose of this study is to identify the characteristics and types of errors in the conceptual image of Korean language learners according to the types of terms in mathematics that are the basis for solving mathematical word problems, and to prepare basic data for effective teaching and learning methods in solving the word problems of Korean language learners. To do this, a case study was conducted targeting four Korean language learners to analyze the specific conceptual images of terms registered in curriculum and terms that were not registered in curriculum but used in textbooks. As a result of this study, first, it is necessary to guide Korean language learners by using sufficient visualization material so that they can form appropriate conceptual definitions for terms in school mathematics. Second, it is necessary to understand the specific relationship between the language used in the home of Korean language learners and the conceptual image of terms in school mathematics. Third, it is necessary to pay attention to the passive term, which has difficulty in understanding the meaning rather than the active term. Fourth, even for Korean language learners who do not have difficulties in daily communication, it is necessary to instruct them on everyday language that are not registered in the curriculum but used in math textbooks. Fifth, terms in school mathematics should be taught in consideration of the types of errors that reflect the linguistic characteristics of Korean language learners shown in the explanation of terms. This recognition is expected to be helpful in teaching word problem solving for Korean language learners with different linguistic backgrounds.
Proceedings of the Korean Society for Information Management Conference
/
2002.08a
/
pp.241-246
/
2002
전역적 질의확장 검색에서 단어간 공기기반 유사도를 사용할 경우에는 질의에 추가되는 용어에 부여하는 탐색가중치로 질의와의 유사도를 사용하는 것이 일반적이다. 그러나 과연 유사도가 탐색가중치로 최적인가는 의문의 여지가 있다. 추가용어와 질의 사이의 유사도가 가지는 특성을 살펴보고 고정가중치를 부여한 경우와 비교해보았다. 또한 실험집단이나 확장범위의 영향을 덜 받는 최적화된 추가용어 가중치를 찾기 위해 여러 가지 탐색가중치 공식을 실험하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.