• Title/Summary/Keyword: 한국어 음소

Search Result 214, Processing Time 0.023 seconds

Korean Speech Recognition using the Phoneme (음소를 이용한 한국어의 인식)

  • 김영일;차일환;조문재
    • The Journal of the Acoustical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.35-45
    • /
    • 1984
  • 본 연구는 한국어의 발음상의 특징과 구조에 의해서 한국어를 음소별로 분리할 수 있음에 착안 하여, 자음과 모음으로 구성된 한국어 단음을 자음의 음소와 모음의 음소로 각각 분리하여 인식하는 새 로운 방법에 관한 연구이다. 특정 화자 2명에 대하여 한국어 단음 84자를 모음의 음소와 자음의 음소로 각각 분리하여 인삭한 실험결과 모음을 인식한 경우에는 선형 예측 계수를 이용하면 인식률이 95.2%이 고, 편자기 상관계수로 92.5%, 폴만트로 97.6%의 인식률을 얻었고, 자음을 인식한 경우에는 선형 예측 계수로 88.7%, 편자기 상관계수로 92.9%의 인식률을 얻었다. 또, 자음의 음소와 모음의 음소를 결합시킨 단음을 인식한 경우에는 선형 예측 계수로 83.9%, 편자기 상관계수로 86.3%의 인식률을 얻었다. 이 때, 각 음소들의 데이터의 수는 256개이고, 선형 예측 계수와 편자기 상관 계수와의 예측차는 15차이다. 이 와 같이 한국어를 자음의 음소와 모음의 음소로 분리하면 작은 데이터 양으로 처리 시간을 단축 시켜 한국어의 모든 단음, 단어, 연속음, 문장 등을 분석하고 인식할 수 있고, 또한 각 음소들을 원칙적으로 결합시켜 모든 한국어의 합성이 가능함을 알 수 있다.

  • PDF

A Study of Development for Korean Phonotactic Probability Calculator (한국어 음소결합확률 계산기 개발연구)

  • Lee, Chan-Jong;Lee, Hyun-Bok;Choi, Hun-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.239-244
    • /
    • 2009
  • This paper is to develop the Korean Phonotactic Probability Calculator (KPPC) that anticipates the phonotactic probability in Korean. KPPC calculates the positional segment frequecncy, position-specific biphone frequency and position-specific triphone frequency. And KPPC also calculates the Neighborhood Density that is the number of words that sound similar to a target word. The Phonotactic Calculator that was developed in University of Kansas can be analyzed by the computer-readable phonemic transcription. This can calculate positional frequency and position-specific biphone frequency that were derived from 20,000 dictionary words. But KPPC calculates positional frequency, positional biphone frequency, positional triphone frequency and neighborhood density. KPPC can calculate by korean alphabet or computer-readable phonemic transcription. This KPPC can anticipate high phonotactic probability, low phonotactic probability, high neighborhood density and low neighborhood density.

Korean Phoneme Sequence based Word Embedding (한국어 음소열 기반 워드 임베딩 기술)

  • Chung, Euisok;Jeon, Hwa Jeon;Lee, Sung Joo;Park, Jeon-Gue
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.225-227
    • /
    • 2017
  • 본 논문은 한국어 서브워드 기반 워드 임베딩 기술을 다룬다. 미등록어 문제를 가진 기존 워드 임베딩 기술을 대체할 수 있는 새로운 워드 임베딩 기술을 한국어에 적용하기 위해, 음소열 기반 서브워드 자질 검증을 진행한다. 기존 서브워드 자질은 문자 n-gram을 사용한다. 한국어의 경우 특정 단음절 발음은 단어에 따라 달라진다. 여기서 음소열 n-gram은 특정 서브워드 자질의 변별력을 확보할 수 있다는 장점이 있다. 본 논문은 서브워드 임베딩 기술을 재구현하여, 영어 환경에서 기존 워드 임베딩 사례와 비교하여 성능 우위를 확보한다. 또한, 한국어 음소열 자질을 활용한 실험 결과에서 의미적으로 보다 유사한 어휘를 벡터 공간상에 근접시키는 결과를 보여 준다.

  • PDF

Korean Continuous Speech Recognition using Phone Models for Function words (기능어용 음소 모델을 적용한 한국어 연속음성 인식)

  • 명주현;정민화
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.354-356
    • /
    • 2000
  • 의사형태소를 디코딩 단위로 한국어 연속 음성 인식에서의 조사, 어미, 접사 및 짧은 용언의 어간등의 단어가 상당수의 인식 오류를 발생시킨다. 이러한 단어들은 발화 지속시간이 매우 짧고 생략이 빈번하며 결합되는 다른 형태소의 형태에 따라서 매우 심한 발음상의 변이를 보인다. 본 논문에서는 이러한 단어들은 한국어 기능어라 정의하고 실제 의사형태소 단위의 인식 실험을 통하여 기능어 집합 1, 2를 규정하였다. 그리고 한국어 기능어에 기능어용 음소를 독립적으로 적용하는 방법을 제안했다. 또한 기능어용 음소가 분리되어 생기는 음향학적 변이들을 처리하기 위해 Gaussian Mixture 수를 증가시켜 보다 견고한 학습을 수행했고, 기능어들의 음향 모델 스코어가 높아짐에 따른 인식에서의 삽입 오류 증가를 낮추기 위해 언어 모델에 fixed penalty를 부여하였다. 기능어 집합1에 대한 음소 모델을 적용한 경우 전체 문장 인식률은 0.8% 향상되었고 기능어 집합2에 대한 기능어 음소 모델을 적용하였을 때 전체 문장 인식률은 1.4% 증가하였다. 위의 실험 결과를 통하여 한국어 기능어에 대해 새로운 음소를 적용하여 독립적으로 학습하여 인식을 수행하는 것이 효과적임을 확인하였다.

  • PDF

Korean Phoneme Sequence based Word Embedding (한국어 음소열 기반 워드 임베딩 기술)

  • Chung, Euisok;Jeon, Hwa Jeon;Lee, Sung Joo;Park, Jeon-Gue
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.225-227
    • /
    • 2017
  • 본 논문은 한국어 서브워드 기반 워드 임베딩 기술을 다룬다. 미등록어 문제를 가진 기존 워드 임베딩 기술을 대체할 수 있는 새로운 워드 임베딩 기술을 한국어에 적용하기 위해, 음소열 기반 서브워드 자질 검증을 진행한다. 기존 서브워드 자질은 문자 n-gram을 사용한다. 한국어의 경우 특정 단음절 발음은 단어에 따라 달라진다. 여기서 음소열 n-gram은 특정 서브워드 자질의 변별력을 확보할 수 있다는 장점이 있다. 본 논문은 서브워드 임베딩 기술을 재구현하여, 영어 환경에서 기존 워드 임베딩 사례와 비교하여 성능 우위를 확보한다. 또한, 한국어 음소열 자질을 활용한 실험 결과에서 의미적으로 보다 유사한 어휘를 벡터 공간상에 근접시키는 결과를 보여 준다.

  • PDF

The Analysis and Recognition of Korean Speech Signal using the Phoneme (음소에 의한 한국어 음성의 분석과 인식)

  • Kim, Yeong-Il;Lee, Geon-Gi;Lee, Mun-Su
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.38-47
    • /
    • 1987
  • As Korean language can be phonemically classified according to the characteristic and structure of its pronunciation, Korean syllables can be divided into the phonemes such as consonant and vowel. The divided phonemes are analyzed by using the method of partial autocorrelation, and the order of partial autocorelation coefficient is 15. In analysis, it is shown that each characteristic of the same consonants, vowels, and end consonant in syllables in similar. The experiments is carried out by dividing 675 syllables into consonants, vowels, and end consonants. The recognition rate of consonants, vowels, end-consonants, and syllables are $85.0(\%)$, $90.7(\%)$, $85.5(\%)$and $72.1(\%)$ respectively. In conclusion, it is shown that Korean syllables, divided by the phonemes, are analyzed and recognized with minimum data and short processing time. Furthermore, it is shown that Korean syllables, words and sentences are recognized in the same way.

  • PDF

Korean Phoneme Recognition Model with Deep CNN (Deep CNN 기반의 한국어 음소 인식 모델 연구)

  • Hong, Yoon Seok;Ki, Kyung Seo;Gweon, Gahgene
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.398-401
    • /
    • 2018
  • 본 연구에서는 심충 합성곱 신경망(Deep CNN)과 Connectionist Temporal Classification (CTC) 알고리즘을 사용하여 강제정렬 (force-alignment)이 이루어진 코퍼스 없이도 학습이 가능한 음소 인식 모델을 제안한다. 최근 해외에서는 순환 신경망(RNN)과 CTC 알고리즘을 사용한 딥 러닝 기반의 음소 인식 모델이 활발히 연구되고 있다. 하지만 한국어 음소 인식에는 HMM-GMM 이나 인공 신경망과 HMM 을 결합한 하이브리드 시스템이 주로 사용되어 왔으며, 이 방법 은 최근의 해외 연구 사례들보다 성능 개선의 여지가 적고 전문가가 제작한 강제정렬 코퍼스 없이는 학습이 불가능하다는 단점이 있다. 또한 RNN 은 학습 데이터가 많이 필요하고 학습이 까다롭다는 단점이 있어, 코퍼스가 부족하고 기반 연구가 활발하게 이루어지지 않은 한국어의 경우 사용에 제약이 있다. 이에 본 연구에서는 강제정렬 코퍼스를 필요로 하지 않는 CTC 알고리즘을 도입함과 동시에, RNN 에 비해 더 학습 속도가 빠르고 더 적은 데이터로도 학습이 가능한 합성곱 신경망(CNN)을 사용하여 딥 러닝 모델을 구축하여 한국어 음소 인식을 수행하여 보고자 하였다. 이 모델을 통해 본 연구에서는 한국어에 존재하는 49 가지의 음소를 추출하는 세 종류의 음소 인식기를 제작하였으며, 최종적으로 선정된 음소 인식 모델의 PER(phoneme Error Rate)은 9.44 로 나타났다. 선행 연구 사례와 간접적으로 비교하였을 때, 이 결과는 제안하는 모델이 기존 연구 사례와 대등하거나 조금 더 나은 성능을 보인다고 할 수 있다.

The segmentation of Korean word for the lip-synch application (Lip-synch application을 위한 한국어 단어의 음소분할)

  • 강용성;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.509-512
    • /
    • 2001
  • 본 논문은 한국어 음성에 대한 한국어 단어의 음소단위 분할을 목적으로 하였다. 대상 단어는 원광대학교 phonetic balanced 452단어 데이터 베이스를 사용하였고 분할 단위는 음성 전문가에 의해 구성된 44개의 음소셋을 사용하였다. 음소를 분할하기 위해 음성을 각각 프레임으로 나눈 후 각 프레임간의 스펙트럼 성분의 유사도를 측정한 후 측정한 유사도를 기준으로 음소의 분할점을 찾았다. 두 프레임 간의 유사도를 결정하기 위해 두 벡터 상호간의 유사성을 결정하는 방법중의 하나인 Lukasiewicz implication을 사용하였다. 본 실험에서는 기존의 프레임간 스펙트럼 성분의 유사도 측정을 이용한 하나의 어절의 유/무성음 분할 방법을 본 실험의 목적인 한국어 단어의 음소 분할 실험에 맞도록 수정하였다. 성능평가를 위해 음성 전문가에 의해 손으로 분할된 데이터와 본 실험을 통해 얻은 데이터와의 비교를 하여 평가를 하였다. 실험결과 전문가가 직접 손으로 분할한 데이터와 비교하여 32ms이내로 분할된 비율이 최고 84.76%를 나타내었다.

  • PDF

Korean Phonological Viseme for Lip Synch Based on Phoneme Recognition (음소인식 기반의 립싱크 구현을 위한 한국어 음운학적 Viseme의 제안)

  • Joo Heeyeol;Kang Sunmee;Ko Hanseok
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.70-73
    • /
    • 1999
  • 본 논문에서는 한국어에 대한 실시간 음소 인식을 통한 Lip Synch 구현에 필수요소인 Viseme(Visual Phoneme)을 한국어의 음운학적 접근 방법을 통해 제시하고, Lip Synch에서 입술의 모양에 결정적인 영향을 미치는 모음에 대한 모음 인식 실험 및 결과 분석을 한다.모음인식 실험에서는 한국어 음소 51개 각각에 대해 3개의 State로 이루어진 CHMM (Continilous Hidden Makov Model)으로 모델링하고, 각각의 음소가 병렬로 연결되어진 음소네트워크를 사용한다. 입력된 음성은 12차 MFCC로 특징을 추출하고, Viterbi 알고리즘을 인식 알고리즘으로 사용했으며, 인식과정에서 Bigrim 문법과 유사한 구조의 음소배열 규칙을 사용해서 인식률과 인식 속도를 향상시켰다.

  • PDF

A Study on the Korean Continuous Speech Recognition using Phonetic Decision Tree-based State Splitting (음소결정트리 상태분할을 이용한 한국어 연속음성인식에 관한 연구)

  • 오세진;황철준;김범국;정호열;정현열
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.277-280
    • /
    • 2001
  • 본 연구에서는 연속음성인식 시스템의 성능개선을 위한 기초 연구로서 음소결정트리 상태분할과 한국어 음성학적 지식을 이용하여 문맥의존 음향모델의 작성방법을 검토하고. 한국어 연속음성인식에 적용을 소개한다. 음소결정트리 상태분할 알고리즘은 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어 집합에 따라 2진 트리로 SSS(Successive State Splitting) 알고리즘에 의해 상태분할 하는 방법으로서 상태분할 후 각 상태를 네트워크로 연결한 구조를 HM-Net(Hidden Markow Network)이라 하며 문맥의존 음향모델로 표현된다. 작성한 문맥의존 음향모델의 유효성을 확인하기 위해 본 연구실의 항공편 예약 문장(YNU200)에 대해 연속음성인식 실험을 수행하였다. 인식실험 결과, 문맥의존 음향모델에 대한 화자독립 연속음성인식률이 기존의 단일 HMM 모델보다 평균적으로 1-pass의 경우 9.9%, 2-pass의 경우 4.1% 향상된 인식률을 보였다. 따라서 문맥의존 음향모델을 작성하는데 음소결정트리 상태분할과 한국어 음성학적 지식이 유효함을 확인하였다.

  • PDF