Kim, Yun-Tae;Kim, Ji-Won;Son, Su-Jeong;Lee, Hyun-Ah
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.639-641
/
2018
고전적으로 이용되던 디렉터리 분류로는 원하는 정보를 빠르게 찾기 어려워지면서, 키워드 기반 검색 시스템이 정보 처리의 중심이 되고 있다. 본 논문에서는 개인용 컴퓨터에서의 빠른 자료 검색을 위한 키워드 기반 정보검색 시스템을 제안한다. 시스템에서는 동적 색인을 통하여 기존 시스템들보다 빠른 시간 내에 검색 결과를 제공한다. 내용 기반 검색과 다양한 포맷에 대한 문서 검색 기능을 포함하여 사용자에게 편리한 환경을 제공할 뿐만 아니라, 한글 문장이 포함된 문서에 대해서 원활한 검색을 제공하고자 한다. 성능 비교 검증을 수행한 결과 기존 시스템에 비해 보다 빠른 시간 내에 많은 문서를 탐지할 수 있음을 확인하였다.
It is necessary to classify technical documents such as patents, R&D project reports in order to understand the trends of technology convergence and interdisciplinary joint research, technology development and so on. Text mining techniques have been mainly used to classify these technical documents. However, in the case of classifying technical documents by text mining algorithms, there is a disadvantage that the features representing technical documents must be directly extracted. In this study, we propose a BERT-based document classification model to automatically extract document features from text information of national R&D projects and to classify them. Then, we verify the applicability and performance of the proposed model for classifying documents.
Annual Conference on Human and Language Technology
/
2008.10a
/
pp.189-194
/
2008
본 논문에서는 토픽 시그너처(Topic Signature)와 n-gram을 이용한 댓글 분류 시스템을 개발한다. 토픽 시그너처는 문서요약이나 문서분류에서 자질 선택을 위한 방법으로 많이 사용되어지며, n-gram은 모든 언어에 적용 가능한 장점이 있다. 악성댓글은 대체로 문장 길이가 짧고 유행어나 변형어의 출현 빈도가 높으며 비정형화된 특징이 있다. 따라서 우리는 댓글을 n-gram으로 나누어 자질로 선택한다. 분류를 위해 베이지안(Bayesian)모델을 사용하였다. 본 논문에서는 한글과 영어 댓글에 대한 판별 실험을 통하여 구현한 시스템이 복잡한 전처리 과정이 필요한 기존에 제안된 방법들보다 더 나은 성능을 보이며, 언어에 관계없이 적용 가능하다는 것을 실험 결과를 통해 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.394-398
/
2020
산업/직업분류 자동코딩시스템은 고용조사 등을 함에 있어 사업체 정보, 업무, 직급, 부서명 등 사용자의 다양한 입력을 표준 산업/직업분류에 맞춰 코드 정보를 제공해주는 시스템이다. 입력 데이터로부터 비지도학습 기반의 색인어 추출 모델을 학습하고, 부분단어 임베딩이 적용된 색인어 임베딩 모델을 통해 입력 벡터를 추출 후, 출력 분류 코드를 인코딩하여 지도학습 모델에서 학습하는 방법을 적용하였다. 기존 시스템의 분류 결과 데이터를 통해 대, 중, 소, 세분류에서 높은 정확도의 모델을 구축할 수 있으며, 기계학습 기술의 적용이 가능한 시스템임을 알 수 있다.
Field-associated Terms itself have field Information. So, they determine field of document just like when human being perceives field. In case of Korean, we organized and experimented them by collecting approximately IS,999 document banks that are classified into 180 fields. We obtained high precision of extraction that 88,782 single field-associated terms are contracted into 8,405 ones thus recording compression rate as approximately 9$\%$ and recall as above 0.77 (average 0.85), precision as above 0.90 (average 0.94). By applying established field-associated terms to initial determination for document classification and comparing it with filed determination by human being, we got correct answers above approximately 90$\%$. We can use results of research as fundamental research for initial stage and apply it document retrieval between multilingual environment thus utilizing it as fundamental research for multilingual information retrieval.
Annual Conference on Human and Language Technology
/
2002.10e
/
pp.129-136
/
2002
고성능의 질의응답 시스템을 구현하기 위해서는 사용자의 질의 유형의 난이도에 관계없이 의도를 파악할 수 있는 질의유형 분류기가 필요하다. 본 논문에서는 문서 범주화 기법을 이용한 질의 유형 분류기를 제안한다. 본 논문에서 제안하는 질의 유형 분류기의 분류 과정은 다음과 같다. 우선, 사용자 질의에 포함된 어휘, 품사, 의미표지와 같은 다양한 정보를 이용하여 사용자 질의로부터 자질들을 추출한다. 이 과정에서 질의의 구문 특성을 반영하기 위해서 슬라이딩 윈도 기법을 이용한다. 또한, 다량의 자질들 중에서 유용한 것들만을 선택하기 위해서 카이 제곱 통계량을 이용한다. 추출된 자질들은 벡터 공간 모델로 표현되고, 문서 범주화 기법 중 하나인 지지 벡터 기계(support vector machine, SVM)는 이 정보들을 이용하여 질의 유형을 분류한다. 본 논문에서 제안하는 시스템은 질의 유형 분류 문제에지지 벡터 기계를 이용한 자동문서 범주화 기법을 도입하여 86.4%의 높은 분류 정확도를 보였다. 또한 질의 유형 분류기를 통계적 방법으로 구축함으로써 lexico-syntactic 패턴과 같은 규칙을 기술하는 수작업을 배제할 수 있으며, 응용 영역의 변화에 대해서도 안정적인 처리와 빠른 이식성을 보장한다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.76-81
/
2020
법률 전문 지식이 없는 사람들이 법률 정보 검색을 성공적으로 하기 위해서는 일반 용어를 검색하더라도 전문 용어가 사용된 법령정보가 검색되어야 한다. 하지만 현 판례 검색 시스템은 사용자 선호도 검색이 불가능하며, 일반 용어를 사용하여 검색하면 사용자가 원하는 전문 자료를 도출하는 데 어려움이 있다. 이에 본 논문에서는 일반용어가 사용된 질의문과 전문용어가 사용된 판례를 자동으로 연결해 주고자 하였다. 질의문과 연관된 판례를 자동으로 연결해 주기 위해 전문용어가 사용된 전문가 답변을 바탕으로 문서분류에 높은 성능을 보이는 Doc2Vec을 이용한다. Doc2Vec 문서 임베딩 기법을 이용하여 전문용어가 사용된 전문가 답변과 유사한 답변을 제안하여 비슷한 주제의 답변들끼리 분류하였다. 또한 전문가 답변과 유사도가 높은 판례를 제안하여 질의문에 해당하는 판례를 자동으로 연결하였다.
Annual Conference on Human and Language Technology
/
2006.10e
/
pp.98-106
/
2006
문서분류기의 개발에 있어 교사학습기법을 이용할 경우 많은 양의 사람에 의한 범주 부착 말뭉치가 필요하다. 그러나 이의 구축은 많은 시간과 노력을 필요로 한다. 최근 이러한 범주 부착 말뭉치 대신 원시말뭉치와 범주마다 약간의 씨앗 정보를 이용하여 학습을 수행하여 문서분류기를 개발하는 방법론이 제시되었다. 본 논문에서는 이 방법론 하에서 다른 연구에서의 결과보다 좋은 성능을 나타내는 비교사 학습 기법을 소개한다. 본 논문에서 제시하는 기법의 특징은 씨앗 단어에서 출발하여 평균상호정보를 이용하여 다른 대표단어 및 그들의 가중치를 학습한 다음, 정보검색에서 많이 사용하는 기술을 이용하여 그 가중치를 갱신하는 것이다. 그리고 이 과정을 반복 수행하여 최종적으로 높은 성능의 시스템을 개발할 수 있음을 제시하였다.
Park, Eunhwan;Na, Seung-Hoon;Lim, Joon-Ho;Kim, Tae-Hyeong;Choi, Yun-Su;Chang, Du-Seong
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.501-504
/
2021
최근 언어 모델은 분류, 기계 독해, 생성 등의 태스크에서 성공적인 결과를 보여주고 있다. 본 논문에서는 최근 많은 관심을 받고 있는 인코더-디코더 구조의 언어 모델인 BART, T5 그리고 PALM을 위키피디아 한국어 데이터 집합으로 사전 학습한 후 기계 독해와 문서 생성 요약 태스크에 대하여 미세 조정을 하고 성능 비교를 한다.
Annual Conference on Human and Language Technology
/
1996.10a
/
pp.338-345
/
1996
일본어 특허 문서를 번역하기 위해 개발이 시작된 COBALT-J/K(COllocation - BAsed Language Translator from Japanese to Korea)는 현재 그 번역 대상을 모든 일본어 문서로 확장해 곧, 상용 시스템으로 전환을 바라보고 있다. 이런 시점에서 일반 문서를 대상으로 하는 범용 기계 번역 시스템의 관점에서 시스템을 평가하여 문제점을 찾고, COBALT-J/K가 우선적으로 해결하고자 한 문제들이 올바르게 해결되었는지를 살피고자 한다. 이를 위한 평가 방법으로 문형별로 분류된 다수의 일본어 문장에 대하여 실제 번역을 하여 한국어 번역문과 일본어 원문을 비교하는 방식으로 분석하였으며, 현재 시판되고 있는 J-Seoul에 대해서도 같은 방법으로 실험한 결과를 얻은 후, 이 결과는 평가의 보조 자료로 삼았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.