• 제목/요약/키워드: 한계입력

검색결과 628건 처리시간 0.031초

원전 구조물-기기 상호작용이 기기 지진응답에 미치는 영향 연구 (A Study on the Effects of Nuclear Power Plant Structure-Component Interaction in Component Seismic Responses)

  • 곽신영;임승현;정광섭;정재욱;최인길
    • 한국전산구조공학회논문집
    • /
    • 제35권2호
    • /
    • pp.83-91
    • /
    • 2022
  • 원자력발전소 기기 내진설계 및 지진해석은 비연계모델을 대상으로 수행된다. 그러나 이러한 비연계해석은 실제 구조물-기기 간 상호작용 등의 실제 현상을 모사할 수 없기 때문에 연계해석에 비하여 정확하지 못한 결과를 발생시키게 된다는 한계를 가진다. 이러한 배경 아래 이 연구는 실제 원전 격납건물 구조물 및 관련 부계통을 대상으로 질량비와 고유진동수비를 고려하여 지진 연계해석과 비연계해석을 수행하고, 이를 바탕으로 부계통에서의 응답을 비교 분석하였다. 결과적으로 지진 연계해석 결과가 비연계해석 결과보다 대다수 작은 값을 주는 것을 확인하였다. 이러한 결과는 기존 연구인 단순한 연계모델에 대한 해석 결과와 유사하지만, 부계통 응답 차이는 훨씬 더 두드러지게 나타나는 것을 확인하였다. 또한, 이는 지진파의 입력 주파수의 영향보다는 부계통의 설치위치에 영향을 받는 것으로 확인되었다. 마지막으로 비연계 및 연계 지진해석의 차이가 부계통의 질량비가 크고, 고유진동수가 거의 일치하는 영역에서 발생하는 이유는 이 영역에서 주계통과 부계통 동적 상호작용이 크게 나타나기 때문인 것으로 보인다.

증발산 산정을 위한 온도기반의 대체모형 개발 및 가뭄지수 적용성 평가 (Development of a surrogate model based on temperature for estimation of evapotranspiration and its use for drought index applicability assessment)

  • 김호준;김경욱;권현한
    • 한국수자원학회논문집
    • /
    • 제54권11호
    • /
    • pp.969-983
    • /
    • 2021
  • 수문기상인자 중 하나인 증발산은 수자원 계획 및 관리 시 고려되며, 특히 물수지모형 등 수문모형의 입력자료로 활용된다. FAO56 PM 방법은 기상인자로부터 기준증발산량(reference evapotranspiration, ET0)을 추정하며, 상대적으로 높은 정확성을 보여준다. 그러나 FAO56 PM 방법은 많은 기상인자가 필요하기 때문에 증발산 추정에 한계가 있다. 이러한 점에서 온도인자 기반의 Hargreaves 식의 매개변수를 Bayesian 모형을 통해 지역적으로 재추정하여 기준증발산량을 산정하였다. 통계 지표(CC, RMSE, IoA)를 활용하여 모형검증을 수행한 결과, 검증 기간에 대해 RMSE는 7.94 ~ 24.91 mm/month에서 6.77 ~ 12.94 mm/month로 기존 Hargreaves 식으로 추정된 증발산량에 비해 정확도가 크게 개선되었다. 본 연구에서는 산정된 기준증발산량을 활용해 증발 요구량(E0) 기반의 가뭄지수 EDDI (evaporative demand drought index)를 제시하였다. 가뭄지수로서 적용성을 확인하기 위해 강수량 및 SPI와 함께 최근 2014 ~ 2015년, 2018년 가뭄사상을 평가하였다. 한강유역에 위치한 춘천, 홍천의 2018년 가뭄 발생 당시, 주단위 EDDI가 2 이상까지 증가하였으며, 이를 통해 EDDI가 강수부족보다는 폭염에 대한 반응정도가 큰 것을 확인할 수 있었다. 가뭄지수 EDDI는 SPI와 함께 가뭄 분석 및 평가에 대해 활용성이 높은 것으로 사료된다.

멀티모달 딥 러닝 기반 이상 상황 탐지 방법론 (Anomaly Detection Methodology Based on Multimodal Deep Learning)

  • 이동훈;김남규
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.101-125
    • /
    • 2022
  • 최근 컴퓨팅 기술의 발전과 클라우드 환경의 개선에 따라 딥 러닝 기술이 발전하게 되었으며, 다양한 분야에 딥 러닝을 적용하려는 시도가 많아지고 있다. 대표적인 예로 정상적인 데이터에서 벗어나는 값이나 패턴을 식별하는 기법인 이상 탐지가 있으며, 이상 탐지의 대표적 유형인 점 이상, 집단적 이상, 맥락적 이중 특히 전반적인 상황을 파악해야 하는 맥락적 이상을 탐지하는 것은 매우 어려운 것으로 알려져 있다. 일반적으로 이미지 데이터의 이상 상황 탐지는 대용량 데이터로 학습된 사전학습 모델을 사용하여 이루어진다. 하지만 이러한 사전학습 모델은 이미지의 객체 클래스 분류에 초점을 두어 생성되었기 때문에, 다양한 객체들이 만들어내는 복잡한 상황을 탐지해야 하는 이상 상황 탐지에 그대로 적용되기에는 한계가 있다. 이에 본 연구에서는 객체 클래스 분류를 학습한 사전학습 모델을 기반으로 이미지 캡셔닝 학습을 추가적으로 수행하여, 객체 파악뿐만 아니라 객체들이 만들어내는 상황까지 이해해야 하는 이상 상황 탐지에 적절한 2 단계 사전학습 모델 구축 방법론을 제안한다. 구체적으로 제안 방법론은 ImageNet 데이터로 클래스 분류를 학습한 사전학습 모델을 이미지 캡셔닝 모델에 전이하고, 이미지가 나타내는 상황을 설명한 캡션을 입력 데이터로 사용하여 학습을 진행한다. 이후 이미지와 캡션을 통해 상황 특질을 학습한 가중치를 추출하고 이에 대한 미세 조정을 수행하여 이상 상황 탐지 모델을 생성한다. 제안 방법론의 성능을 평가하기 위해 직접 구축한 데이터 셋인 상황 이미지 400장에 대해 이상 탐지 실험을 수행하였으며, 실험 결과 제안 방법론이 기존의 단순 사전학습 모델에 비해 이상 상황 탐지 정확도와 F1-score 측면에서 우수한 성능을 나타냄을 확인하였다.

머신러닝 기법을 이용한 미계측 유역에 적용 가능한 지역화 유황곡선 산정 (Estimation of regional flow duration curve applicable to ungauged areas using machine learning technique)

  • 정세진;이승필;김병식
    • 한국수자원학회논문집
    • /
    • 제54권spc1호
    • /
    • pp.1183-1193
    • /
    • 2021
  • Low flow는 하천수의 공급관리 및 계획, 관개용수 등 다양한 분야에 영향을 미친다. 이러한 유황곡선을 산정하기 위해서는 30년 이상의 충분한 기간의 유량자료의 확보가 필수적이다. 하지만 국가하천 단위 이하의 하천의 경우 장기간의 유량자료가 없거나 중간에 일정기간 동안 결측된 관측소가 있어 하천별 유황 곡선을 산정하기에 한계가 있다. 이에 과거에는 미계측 유역의 유황을 예측하기 위해 다중회귀분석(Multiple Regression Analysis), ARIMA 모형 등 통계학적 기반의 기법들을 사용하였지만, 최근에는 머신러닝, 딥러닝 모형의 수요가 증가하고 있다. 이에 본 연구에서는 최신 패러다임에 맞는 머신러닝 기법인 DNN기법을 제시한다. DNN기법은 ANN기법의 단점인 학습과정에서 최적 매개변수 값을 찾기 어렵고, 학습시간이 느린 단점을 보완한 방법이다. 따라서 본연구에서는 DNN 모형을 이용하여 미계측 유역에 적용 가능한 유황곡선을 산정하고자 한다. 먼저, 유황곡선에 영향을 미치는 인자들을 수집하고 인자들 간의 다중공선성 분석을 통해 통계적으로 유의한 변수를 선정하여, 머신러닝 모형에 입력자료를 구축하였다. 통계적 검증을 통해 머신러닝 기법의 효용성을 검토하였다.

교량 구조물 손상탐지를 위한 Open Set Recognition 기반 다중손상 인식 모델 개발 (Development of Open Set Recognition-based Multiple Damage Recognition Model for Bridge Structure Damage Detection)

  • 김영남;조준상;김준경;김문현;김진평
    • 대한토목학회논문집
    • /
    • 제42권1호
    • /
    • pp.117-126
    • /
    • 2022
  • 현재 국내 교량 구조물은 지속적으로 증가 및 대형화되고 있으며 그에 따라 공용된 지 30년 이상 된 노후 교량도 꾸준히 늘어나고 있다. 교량 노후화 문제는 국내뿐 아니라 전 세계적으로도 심각한 사회 문제로 다루어지고 있으며, 기존 인력 위주의 점검 방식은 그 한계점을 드러내고 있다. 최근 들어 딥러닝 기반의 영상처리 알고리즘을 활용한 각종 교량 손상탐지 연구가 이루어지고 있지만 교량 손상 데이터 세트의 한계로 인하여 주로 균열 1종에 국한된 교량 손상탐지 연구가 대부분이고, 이 또한 Close set 분류모델 기반 탐지방식으로서 실제 교량 촬영 영상에 적용했을 시 배경이나 기타 객체 등 학습되지 않은 클래스의 입력 이미지들로 인하여 심각한 오인식 문제가 발생할 수 있다. 본 연구에서는 균열 포함 5종의 교량 손상을 정의 및 데이터 세트를 구축해서 딥러닝 모델로 학습시키고, OpenMax 알고리즘을 적용한 Open set 인식 기반 교량 다중손상 인식 모델을 개발했다. 그리고 학습되지 않은 이미지들을 포함하고 있는 Open set에 대한 분류 및 인식 성능평가를 수행한 후 그 결과를 분석했다.

Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석 (Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin)

  • 김병철;이경일;박선영;임정호
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.765-779
    • /
    • 2022
  • 본 연구에서는 Landsat 8/9 OLI와 Sentinel-2 MSI 위성 영상을 활용한 다시기 영상 데이터를 이용하여 다양한 분광 지수를 기반으로 국내 산불 피해 면적 탐지 정확도를 분석하였다. 2022년 3월 경상북도 울진에서 발생하였던 산불을 대상으로 Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), Burned Area Index (BAI) 등의 지수를 활용하여 산불피해 면적 탐지에 활용하였다. 비교적 높은 공간 해상도를 가진 Sentinel-2 영상을 기반으로 참조 자료를 제작하였다. 총 6개의 지수 산출물을 기반으로 Sentinel-2, Landsat 8/9으로 총 4개 위성에 대해 산불 피해 정확도를 각각 분석하였다. Landsat 8/9과 Sentinel-2는 각각 16일, 10일 주기로 영상을 제공하고 있지만 구름으로 인해 영상 취득에 어려움이 많은 편이며, 우리나라는 4월부터 식생의 생장이 시작되어 봄철 산불 피해 분석 시 산불발생 전후 영상을 활용하는 경우 식생의 생장으로 인한 변화가 커서 정확도 높은 탐지에 어려움이 있다. 따라서, 본 연구는 2월에서 5월까지의 다시기 Landsat 8/9과 Sentinel-2 영상 중 같은 날짜를 기반의 영상을 서로 사용하여 시간해상도의 한계를 극복하고 탐지 정확도가 상대적으로 높은 지수를 비교 분석했다. 본 연구 결과는 한국형 산불피해 탐지 지수/모델 개발을 위한 입력 자료 등으로 활용되어 최적화된 산불 지수를 기반으로 정확도 높은 산불 피해 면적 탐지에 활용될 수 있을 것으로 기대된다.

형태학적 연산과 경계추출 학습이 강화된 U-Net을 활용한 Sentinel-1 영상 기반 수체탐지 (Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images)

  • 김휘송;김덕진;김준우
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.793-810
    • /
    • 2022
  • 실시간 범람 모니터링을 위해 인공위성 SAR영상을 활용하는 수체탐지에 대한 필요성이 대두되었다. 주야와 기상에 상관없이 주기적으로 촬영 가능한 인공위성 SAR 영상은 육지와 물의 영상학적 특징이 달라 수체탐지에 적합하나, 스페클 노이즈와 영상별 상이한 밝기 값 등의 한계를 내포하여 다양한 시기에 촬영된 영상에 일괄적으로 적용 가능한 수체탐지 알고리즘 개발이 쉽지 않다. 이를 위해 본 연구에서는 Convolutional Neural Networks (CNN)기반 모델인 U-Net 아키텍처에 레이어의 조합인 모듈을 추가하여 별도의 전처리 없이 수체탐지의 정확도 향상 방법을 제시하였다. 풀링 레이어의 조합을 활용하여 형태학적 연산처리 효과를 제공하는 Morphology Module과 전통적인 경계탐지 알고리즘의 가중치를 대입한 컨볼루션 레이어를 사용하여 경계 학습을 강화시키는 Edge-enhanced Module의 다양한 버전을 테스트하여, 최적의 모듈 구성을 도출하였다. 최적의 모듈 버전으로 판단된 min-pooling과 max-pooling이 연속으로 이어진 레이어와 min-pooling로 구성된 Morphology 모듈과 샤를(Scharr) 필터를 적용한 Edge-enhanced 모듈의 산출물을 U-Net 모델의 conv 9에 입력자료로 추가하였을 때, 정량적으로 9.81%의 F1-score 향상을 보여주었으며, 기존의 U-Net 모델이 탐지하지 못한 작은 수체와 경계선을 보다 세밀하게 탐지할 수 있는 성능을 정성적 평가를 통해 확인하였다.

부가 정보를 활용한 비전 트랜스포머 기반의 추천시스템 (A Vision Transformer Based Recommender System Using Side Information)

  • 권유진;최민석;조윤호
    • 지능정보연구
    • /
    • 제28권3호
    • /
    • pp.119-137
    • /
    • 2022
  • 최근 추천 시스템 연구에서는 사용자와 아이템 간 상호 작용을 보다 잘 표현하고자 다양한 딥 러닝 모델을 적용하고 있다. ONCF(Outer product-based Neural Collaborative Filtering)는 사용자와 아이템의 행렬을 외적하고 합성곱 신경망을 거치는 구조로 2차원 상호작용 맵을 제작해 사용자와 아이템 간의 상호 작용을 더욱 잘 포착하고자 한 대표적인 딥러닝 기반 추천시스템이다. 하지만 합성곱 신경망을 이용하는 ONCF는 학습 데이터에 나타나지 않은 분포를 갖는 데이터의 경우 예측성능이 떨어지는 귀납적 편향을 가지는 한계가 있다. 본 연구에서는 먼저 NCF구조에 Transformer에 기반한 ViT(Vision Transformer)를 도입한 방법론을 제안한다. ViT는 NLP분야에서 주로 사용되던 트랜스포머를 이미지 분류에 적용하여 좋은 성과를 거둔 방법으로 귀납적 편향이 합성곱 신경망보다 약해 처음 보는 분포에도 robust한 특징이 있다. 다음으로, ONCF는 사용자와 아이템에 대한 단일 잠재 벡터를 사용하였지만 본 연구에서는 모델이 더욱 다채로운 표현을 학습하고 앙상블 효과도 얻기 위해 잠재 벡터를 여러 개 사용하여 채널을 구성한다. 마지막으로 ONCF와 달리 부가 정보(side information)를 추천에 반영할 수 있는 아키텍처를 제시한다. 단순한 입력 결합 방식을 활용하여 신경망에 부가 정보를 반영하는 기존 연구와 달리 본 연구에서는 독립적인 보조 분류기(auxiliary classifier)를 도입하여 추천 시스템에 부가정보를 보다 효율적으로 반영할 수 있도록 하였다. 결론적으로 본 논문에서는 ViT 의 적용, 임베딩 벡터의 채널화, 부가정보 분류기의 도입을 적용한 새로운 딥러닝 모델을 제안하였으며 실험 결과 ONCF보다 높은 성능을 보였다.

체험식 안전교육 이수 근로자의 행동 변화 연구 (Behavioral Change of Workers who completed Experiential Safety Training)

  • 조춘환
    • 한국재난정보학회 논문집
    • /
    • 제19권1호
    • /
    • pp.161-172
    • /
    • 2023
  • 건설근로자에게 강의식으로 전달하는 안전교육은 집중도와 몰입도에 한계가 있으므로 전달력과 흥미가 떨어진다. 교육을 통하여 불안전한 행동을 개선하고, 안전사고를 예방하기 위해서는 체험식 교육으로 패러다임을 전환할 필요가 있다. 연구목적: 체험식 안전교육은 건설근로자가 위험을 더 빠르게 인지하고, 응급대처 능력향상과 사전·사후 학습전이 효과성을 검증하므로 건설근로자 사고 예방에 기여하고, 체험교육이 건설근로자 안전한 행동 유도에 미치는 영향 연구가 목적이다. 연구방법:실제 건설 현장과 동일 작업환경으로 구성된 체험시설을 경험한 종사자들의 설문으로 안전체험교육 사전·사후에 대한 의견조사와 학습전이 성과에 대해서 조작적 정의와 변수측정도구를 계획하고, 연구가설을 설정하였다. 연구결과: 구조방정식 모형을 통하여 경로분석 하였으며, 베이지안 이론과 MC 시뮬레이션 분석법으로 척도목표 기술통계량 및 척도입력 기술통계량에서 의도된 안전(A), 불안전(B)의 하위영역 비(非) 체험 교육, 체험식 교육의 평균, 표준편차, 최소·최대 값을 통해서 건설근로자 행동 변화를 확인하고 가설을 증명하였다. 결론: 건설근로자들에게 참여동기가 유발되어야 교육의 효과와 산업재해가 감소된다.

Bi-LSTM 모델을 이용한 음악 생성 시계열 예측 (Prediction of Music Generation on Time Series Using Bi-LSTM Model)

  • 김광진;이칠우
    • 스마트미디어저널
    • /
    • 제11권10호
    • /
    • pp.65-75
    • /
    • 2022
  • 딥러닝은 기존의 분석 모델이 갖는 한계를 극복하고 텍스트, 이미지, 음악 등 다양한 형태의 결과물을 생성할 수 있는 창의적인 도구로 활용되고 있다. 본 고에서는 Niko's MIDI Pack 음원 파일 1,609개를 데이터 셋으로 삼아 전처리 과정을 수행하고, 양방향 장단기 기억 순환 신경망(Bi-LSTM) 모델을 이용하여, 효율적으로 음악을 생성할 수 있는 전처리 방법과 예측 모델을 제시한다. 생성되는 으뜸음을 바탕으로 음악적 조성(調聲)에 적합한 새로운 시계열 데이터를 생성할 수 있도록 은닉층을 다층화하고, 디코더의 출력 게이트에서 인코더의 입력 데이터 중 영향을 주는 요소의 가중치를 적용하는 어텐션(Attention) 메커니즘을 적용한다. LSTM 모델의 인식률 향상을 위한 파라미터로서 손실함수, 최적화 방법 등 설정 변수들을 적용한다. 제안 모델은 MIDI 학습의 효율성 제고 및 예측 향상을 위해 높은음자리표(treble clef)와 낮은음자리표(bass clef)를 구분하여 추출된 음표, 음표의 길이, 쉼표, 쉼표의 길이와 코드(chord) 등을 적용한 다채널 어텐션 적용 양방향 기억 모델(Bi-LSTM with attention)이다. 학습의 결과는 노이즈와 구별되는 음악의 전개에 어울리는 음표와 코드를 생성하며, 화성학적으로 안정된 음악을 생성하는 모델을 지향한다.