Ensemble approach is applied to the detection modeling of illegal cash accommodation (ICA) that is the well-known type of fraudulent usages of credit cards in far east nations and has not been addressed in the academic literatures. The performance of fraud detection model (FDM) suffers from the imbalanced data problem, which can be remedied to some extent using an ensemble of many classifiers. It is generally accepted that ensembles of classifiers produce better accuracy than a single classifier provided there is diversity in the ensemble. Furthermore, recent researches reveal that it may be better to ensemble some selected classifiers instead of all of the classifiers at hand. For the effective detection of ICA, we adopt ensemble size reduction technique that prunes the ensemble of all classifiers using accuracy and diversity measures. The diversity in ensemble manifests itself as disagreement or ambiguity among members. Data imbalance intrinsic to FDM affects our approach for ICA detection in two ways. First, we suggest the training procedure with over-sampling methods to obtain diverse training data sets. Second, we use some variants of accuracy and diversity measures that focus on fraud class. We also dynamically calculate the diversity measure-Forward Addition and Backward Elimination. In our experiments, Neural Networks, Decision Trees and Logit Regressions are the base models as the ensemble members and the performance of homogeneous ensembles are compared with that of heterogeneous ensembles. The experimental results show that the reduced size ensemble is as accurate on average over the data-sets tested as the non-pruned version, which provides benefits in terms of its application efficiency and reduced complexity of the ensemble.
Journal of The Korean Association of Information Education
/
v.25
no.6
/
pp.973-985
/
2021
The purpose of this study is to suggest the direction and implications of learning with AI in the future by analyzing the trends of research learning with AI in the field of education. For doing this, the final 78 papers published in domestic journals over the past three years from 2019 to July 2021 were selected for analysis through review. The analysis results are as follows. First of all, papers in 2020 among the three years were most published, and the most utilized research method was the qualitative research. In addition, according to the analysis by study subject, studies on elementary school students were the most common, followed by studies on college and graduate students. In the analysis by subject, research related to foreign language education was most utilized and chatbot was most used in the AI technology type. Finally, the research learning with AI accounted for the majority, and student support accounted for the majority as the type of education system learning with AI at the implementation stage among the areas of teaching and learning and evaluation. Based on these results, the direction and implications of learning with AI in the future were presented. This study is meaningful in that it grasped research trends of learning with AI in domestic from an overall perspective, and examined learning with AI focusing on the instructor-learner and the teaching and learning design process.
IT(Information Technology) has focused on infrastructure-technologies in the past but now focuses on IT service. Many companies strive to save costs and improve IT services. For this reason, they strive to implement a good internalization of ITSM (IT Service Management) by developing ITSM systems based on ITIL (Information Technology Infrastructure Library) from the late 2000s. In particular, IT service operations are one of the structure elements of ITIL version 3 and are highly related to the internalization of ITSM. However, in spite-of-the successful implementation of ITSM, the efficiency of IT service management has not improved due to iterative issues. Therefore, this study developed a user-centered training system by defining the iterative issue guidelines and implementing a database. The implemented user-centered training system provided IT service users with regular training services to produce a good solution for iterative issues after connecting the operation part of the ITSM system. Based on the results of this study, we expect that the proposed ITSM system will contribute to efficiently managing IT services by improving the limitations of IT service operation in the ITSM system.
Short message service (SMS) is one of the most important communication methods for people who use mobile phones. However, illegal advertising spam messages exploit people because they can be used without the need for friend registration. Recently, spam message filtering systems that use machine learning have been developed, but they have some disadvantages such as requiring many calculations. In this paper, we implemented a spam message filtering system using the set-based POI search algorithm and sentence similarity without servers. This algorithm can judge whether the input query is a spam message or not using only letter composition without any server computing. Therefore, we can filter the spam message although the input text message has been intentionally modified. We added a specific preprocessing option which aims to enable spam filtering. Based on the experimental results, we observe that our spam message filtering system shows better performance than the original set-based POI search algorithm. We evaluate the proposed system through extensive simulation. According to the simulation results, the proposed system can filter the text message and show high accuracy performance against the text message which cannot be filtered by the 3 major telecom companies.
Recently, there has been a significant interest in the development of autonomous driving simulation environment based on digital twin. In the development of such digital twin-based simulation environment, many researches has been conducted not only performance and functionality validation of autonomous driving, but also generation of virtual training data for deep learning. However, such digital twin-based autonomous driving simulation system has the problem of requiring a significant amount of time and cost for the system development and the data construction. Therefore, in this research, we aim to propose a method for rapidly designing and implementing a digital twin-based autonomous driving simulation system, using only the existing 3D models and high-definition map. Specifically, we propose a method for integrating 3D model of FBX and NGII HD Map for the Busan EDC area into CARLA, and a method for adding and modifying CARLA functions. The results of this research show that it is possible to rapidly design and implement the simulation system at a low cost by using the existing 3D models and NGII HD map. Also, the results show that our system can support various functions such as simulation scenario configuration, user-defined driving, and real-time simulation of traffic light states. We expect that usability of the system will be significantly improved when it is applied to broader geographical area in the future.
Journal of the Korea Society of Computer and Information
/
v.20
no.5
/
pp.53-63
/
2015
Singing voice synthesis is the generation of a song using a computer given its lyrics and musical notes. Hidden Markov models (HMM) have been proved to be the models of choice for text to speech synthesis. HMMs have also been used for singing voice synthesis research, however, a huge database is needed for the training of HMMs for singing voice synthesis. And commercially available singing voice synthesis systems which use the piano roll music notation, needs to adopt the easy to read standard music notation which make it suitable for singing learning applications. To overcome this problem, we use a speech database for training context dependent HMMs, to be used for singing voice synthesis. Pitch and duration control methods have been devised to modify the parameters of the HMMs trained on speech, to be used as the synthesis units for the singing voice. This work describes a singing voice synthesis system which uses a MusicXML based music score editor as the front-end interface for entry of the notes and lyrics to be synthesized and a hidden Markov model based text to speech synthesis system as the back-end synthesizer. A perceptual test shows the feasibility of our proposed system.
The purpose of this study was to investigate the perception of dental students based on their experiences of online classes after taking non-face-to-face education courses for all the school semesters in 2020. For the research method, an online survey was conducted on A survey was conducted on 161 dental students enrolled in A University. The analytical method was conducted through frequency analysis, correlation analysis, and multiple regression analysis. The survey analysis findings showed that the satisfaction of dental students' about the non-face-to-face education course was above 4.2, and the detailed items were in the order of the appropriateness of the attendance processing method, satisfaction with recorded video lectures, and the assessment method of the course grade. In the case of the factors that affect the satisfaction of non-face-to-face education courses, the learning system and assessment method were statistically significant. The online class type that is most preferred by the students is recorded video lectures, and the highest number of participants chose 21~30 minutes as the appropriate time for the class content. It is considered that the application of the online system will continue to be used together with face-to-face education courses in the education site and various university-level efforts like systematic support are required to achieve effective learning achievements. This study only investigated the non-face-to-face education operation conditions of A University, so it cannot be generalized to all universities, but it can be used as basic data to provide education curriculum design and supportive measures for the compatibility of face-to-face and non-face-to-face courses.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.276-279
/
2022
The 4th industrial revolution refers to the transition to a knowledge society in which the production speed of knowledge is fast and the proportion of the knowledge industry is greatly increased. The reorganization of the industrial structure and the change of occupations and jobs due to new technologies are bringing about changes in education, and the development of digital technology has made education that is borderless, individual and dynamic, becoming the new standard of education. With these changes, interest in nano-degrees on new technologies or micro-degrees focused on core courses rather than regular course degrees is increasing. As a representative example, Udacity in the United States has opened and operated online nanodegree courses related to jobs, and collaborates with major companies to develop and educate core training courses necessary for companies, thereby efficiently supporting companies in securing talent. With the revitalization of online vocational and job training, an environment has been prepared in which individuals can set goals for vocational competency development and continue their portfolio-based sustainable learning. However, for effective vocational education, automated and personalized educational content design should be preceded. To this end, in this paper, we propose a personalized career and course map recommendation system in the era of online learning
Journal of the Economic Geographical Society of Korea
/
v.17
no.1
/
pp.45-68
/
2014
This research addressed improvement directions and problems of regional science and technology(S&T) policies in Daegu and Gyungbuk regions in terms of 'Creative Economy' which was a new paradigm of Park Gunhye Government. Creative Economy stressed the construction of an ecosystem in regional research and development activities, and thus it was deeply associated with building a regional innovation system(RIS). There were several problems to strengthen RIS with regional S&T policies of the regions as follows: limits in meeting regional needs due to excessive attraction of central government's projects into regions; the high ratio of programs for future basic research potentials; the lack of programs assessing and coordinating the policies; and the lack of experiences and expenditure of research institutes and firm supporting organizations. Due to these problems, the role of the policies in building RIS did not seem to be effective. Therefore, the policies need to be improved through the following measures: the expansion of regional own policies focusing regional needs; the enhancement of policy coordination by shifting to systematic approach; the expansion of soft supporting programs for constructing innovation systems; and the enhancement of stability and ability of research institutes and firm supporting organizations.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.47
no.1
/
pp.58-68
/
2010
In this paper, we propose an efficient link protection switching scheme for provider backbone bridge systems with a spanning tree for backup links exclusively, and evaluate its performance. The proposed scheme offers guaranteed QoS flows even when a link fault occurrs in the primary link by flooding the flows over the profiled spanning tree. The flooding mechanism over the spanning tree can also provide low latency and remove the loopback flows. We also derive the efficiency of bandwidth usage for the normal flows and the number of lost frames during the link restoration. For evaluating its feasibility, we implement a prototype of PBB-TE systems based on the Linux bridge codes, which can support both link protection switching capability with CCM and MAC-in-MAC encapsulation. A related protocol analyzer is also developed. One can see that the proposed scheme and the prototype can be useful for developing carrier class Ethernet systems based on PBB-TE.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.