• 제목/요약/키워드: 학습 제어

검색결과 1,238건 처리시간 0.027초

GMDP 신경망을 이용한 PID 적응 위치 제어기에 관한연구 (A study on the PID adaptive position controller using GMDP Neural Network)

  • 추연규;임영도
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.258-263
    • /
    • 1995
  • 본 논문은 일반화된 다중 수상돌기 적 (GMDP : Generalized Multi Dendrite Product) 유닛트 신경망을 이용한 PID 적응 위치제어기를 구성하여 직류 서어보 전동기의 위치제어를 실시간 처리 하였다. 제안한 제어기를 위치제어에 적용시켜 실험한 결과 기존의 MLP 신경망 제어기를 이용한 것 보다도 샘플시간을 줄일 수 있다는 장점으로 정밀한 제어 가 가능하다는 것을 확인할 수 있었다. 학습규칙은 기존의 역전파 학습방법이 GMDP 신경 회로망에 적용되었다.

  • PDF

임베디드시스템 활용 교육을 위한 가상교육 시스템 (A Web-based Virtual Education System for Embedded System)

  • 양원석;김현규;최관순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 춘계학술발표대회
    • /
    • pp.505-508
    • /
    • 2006
  • 본 연구에서는 실험 실습 가상교육 또는 원격 교육 콘텐츠가 학습 효과를 향상할 수 있는 효과적인 교육 수단으로 인정되고 있으나 원격에서 실험 실습을 하기위한 환경구성의 어려움을 극복을 위한 방안으로 웹 기반의 하드웨어 원격제어 기술을 이용하여, 임베디드 시스템 활용 교육을 위한 가상교육 시스템을 구현 하였다. 본 가상교육 시스템의 구성은 서버 시스템과 학습 시스템으로 되어 있다. 서버 시스템은 컴파일 서버, 원격 실습 서버, 웹 서버, Telnet 서버, 웹 카메라 서버 등으로 구성한다. 학습 시스템은 이론 강의, 가상 실습, 원격 실습의 세 부분으로 구성한다. 본 연구에서 구현한 시스템은 원격지에서의 프로세서 실습 환경을 제공하기 위해 웹에서 동작하는 Telnet 클라이언트를 제작하여 임베디드 하드웨어를 제어한다. 또한 이론학습 과정을 별도로 구성하고, 원격제어가 불가능한 개발환경 구축 과정은 가상 실습으로 학습하게 하였다. 이러한 점을 활용하여 임베디드 시스템의 효율적인 학습이 가능하다.

  • PDF

확장 칼만 학습 알고리듬을 이용한 웨이블릿 신경 회로망 기반 간접 적응 제어기 설계 (Design of Wavelet Neural Network Based Indirect Adaptive Controller Using EKF Training Method)

  • 김경주;오준섭;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.361-363
    • /
    • 2004
  • 시간 및 주파수 특성 분석이 용이한 웨이블릿을 신경회로망에 적용시킨 웨이블릿 신경 회로망의 파라미터 학습 방법에는 오차 역전파 알고리듬 및 유선 알고리듬 등 여러 가지 방법이 있으나 이러한 학습 방법들은 수렴 시간이 오래 걸리는 단점을 가진다. 따라서 본 논문에서는 웨이블릿 신경 회로망의 최적 파라미터를 결정하기 위한 학습 방법으로 일반적으로 비선형 시스템 추정에 주로 사용되는 확장 칼만 필터 알고리듬을 적용한 신경회로망을 제안한다. 또한 제안된 학습 알고리듬을 이용한 웨이블릿 신경 회로망으로 간접 적응 제어기를 설계하여 연속 시간 혼돈 시스템인 Duffing 시스템의 제어에 적용함으로써 확장 칼만 필터 학습 알고리듬을 적용한 웨이블릿 신경 회로망 모델의 우수성을 보인다.

  • PDF

강화학습에 의해 학습된 기는 로봇의 성능 비교 (Performance Comparison of Crawling Robots Trained by Reinforcement Learning Methods)

  • 박주영;정규백;문영준
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.33-36
    • /
    • 2007
  • 최근에 인공지능 분야에서는, 국내외적으로 강화학습(reinforcement learning)에 관한 관심이 크게 증폭되고 있다. 강화학습의 최근 경향을 살펴보면, 크게 가치함수를 직접 활용하는 방법(value function-based methods), 제어 전략에 대한 탐색을 활용하는 방법(policy search methods), 그리고 액터-크리틱 방법(actor-critic methods)의 세가지 방향으로 발전하고 있음을 알 수 있다. 본 논문에서는 이중 세 번째 부류인 액터-크리틱 방법 중 NAC(natural actor-critic) 기법의 한 종류인 RLS-NAC(recursive least-squares based natural actor-critic) 알고리즘을 다양한 트레이스 감쇠계수를 사용하여 연속제어입력(real-valued control inputs)으로 제어되는 Kimura의 기는 로봇에 대해 적용해보고, 그 성능을 기존의 SGA(stochastic gradient ascent) 알고리즘을 이용하여 학습한 경우와 비교해보도록 한다.

  • PDF

개선된 유전자 알고리즘과 역전파 신경망 알고리즘을 이용한 비선형 모의자료의 학습비교 (A Comparison on the Learning Effect of Simulated Nonlinear Data Using a Modified Generic and Backpropagation Algorithm)

  • 윤여창
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.694-696
    • /
    • 2005
  • 본 논문에서는 개선된 유전자 알고리즘과 역전파 신경망 알고리즘의 특징을 살펴보고, 비선형 모의자료를 이용하여 개선된 유전자 알고리즘 기반의 신경망 학습 효과와 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 비교해 본다. 유전자 알고리즘을 이용한 신경망 학습에는 개선된 신경망 제어기를 이용한다. 역전파 알고리즘을 이용한 신경망 학습에는 일반화 성능향상을 위한 인자들의 결합효과를 이용한다. 모의실험을 통하여 두 가지의 학습에서 학습 수령의 정도와 학습 속도 등을 비교하는 모의실험 결과를 개선된 유전자 알고리즘과 신경망 알고리즘의 학습 결과와 항께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 개선된 신경망 제어기를 통한 학습 결과가 일반 신경망 학습 결과보다 초기 가중값을 작은 범위에서 발생시킬 때 수렴 정확도 및 학습 속도에서 좋은 결과를 나타내 주고 있다.

  • PDF

Web 기반 도구를 이용한 자동화 복합 공정 제어 시스템의 가상실험실 구현 (Implementation of virtual laboratory for automation and complex process control systems using Web-based tool)

  • 한얼;박성무;허지웅;홍상은
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2008년도 춘계학술발표논문집
    • /
    • pp.198-201
    • /
    • 2008
  • 인터넷의 비약적인 발달은 제어시스템의 설계 및 운영에도 많은 영향을 미치게 되어 지금까지와는 전혀 다른 시스템 구현이 가능한 환경으로 만들어 가고 있다. 이와 같은 배경에서 본 연구에서는 LabVIEW를 이용한 복합 공정의 제어 및 모니터링을 Web을 기반으로 한 새로운 방법의 원격제어 시스템을 사용하여 가상실험실을 구현하였다. LS산전의 GLOFA-GM3와 미쓰비시의 MELSEC-Q PLC를 각각 TCP/IP와 RS-232C통신을 사용하여 복합공정 제어 시스템을 구현하였다. NI사의 LabVIEW 프로그램에서 지원하는 Web 출판 기능을 사용하여 웹상에서 50대의 Clint PC의 접속을 가능하게 하여 원격으로 접속, 학습이 가능하도록 가상실험실을 구현하였으며 학습자들은 원격으로 복합 제어공정을 실시간으로 학습할 수 있게 되었다. 나아가 Web 상에서 원격제어의 가능성을 활용하여 산업체에서의 활용범위를 넓히고, 가상 교육환경의 가능성을 열었다.

  • PDF

PD 제어기와 신경회로망을 이용한 유도전동기의 속도제어 ((The Speed Control of Induction Motor using PD Controller and Neural Networks))

  • 양오
    • 전자공학회논문지SC
    • /
    • 제39권2호
    • /
    • pp.157-165
    • /
    • 2002
  • 본 논문에서는 PD 제어기와 신경회로망을 이용하여 3상 유도전동기의 속도제어 시스템을 구현하고자 한다. PD 제어기는 초기의 제어를 담당하며 신경회로망의 초기 학습을 담당한다. 또한, 신경회로망은 비선형 매핑능력과 학습능력이 탁월하기 때문에 제어기로 많이 사용되며 특히 전향경로 신경망은 구조가 매우 간단하기 때문에 본 논문에서는 이를 이용하여 유도전동기의 속도제어 시스템에 구현하였다. 신경회로망의 입력으로는 모터의 기준속도, 엔코더를 이용하여 측정한 모터의 실제 속도와 제어입력 전류를 이용하였고, 온라인 상태로 학습되도록 하였다. 본 논문에서 제안된 알고리즘의 타당성을 보이기 위해 기존에 널리 사용되었던 PI 제어기와 비교평가를 하였으며 시뮬레이션과 실험결과로부터 초기운전 상태에서는 PD 제어기가 주로 제어를 담당하지만 시간이 지남에 따라 신경회로망이 학습되어 신경회로망이 주 제어기가 됨을 확인하였다. 아울러, 제안된 하이브리드 제어기가 PI 제어기보다 우수하고 특히 부하변동과 같은 외란에 강인함을 알 수 있었으며, 정상상태 오차가 현저히 감소하여 정밀한 속도제어가 가능함을 확인하였다.

다계층 퍼셉트론의 온라인 학습에서 학습 순서 제어의 효과 (Effect of Training Sequence Control in On-line Learning for Multilayer Perceptron)

  • 이재영;김황수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권7호
    • /
    • pp.491-502
    • /
    • 2010
  • 인간이 교육을 통해 지식을 습득하고 발전시키는 과정에서, 이전 단계에서의 학습 진행 과정은 향후 학습에 영향을 미친다. 이것은 기계 학습에서도 고려되어야 할 사항으로 실제 기계 학습에서 학습순서의 제어가 어떤 효과가 있는지 살펴볼 필요가 있다. 본 연구에서는 MLP의 학습에서 지도자가 목표값을 알려주는 역할은 물론, 학습 대상의 지식 정도를 고려하여 자료들의 학습 순서를 제어하는 추가적 역할도 수행할 때, 학습 과정에 미치는 효과를 실험한다. 실험 방법은 SOM과 MLP를 이용하여 분류 문제에 적용한다. SOM은 지도자가 학습 순서를 결정하기 위한 학습 자료들의 범주화에 이용되고, MLP는 학습 대상이 된다. 제안하는 방법은 SOM을 학습 자료의 전처리 방법이 아닌, 학습 과정 동안 학습 자료의 선택에 이용하는 점에서 여타 연구들과 차이가 있으며, 실험 결과는 학습에 사용되는 자료의 수와 학습 횟수에서 개선 효과가 있음을 보여준다.

퍼지 신경망을 이용한 ATM망의 호 수락 제어 시스템의 설계 (Design of the Call Admission Control System of the ATM Networks Using the Fuzzy Neural Networks)

  • 유재택;김춘섭;김용우;김영한;이광형
    • 한국정보처리학회논문지
    • /
    • 제4권8호
    • /
    • pp.2070-2079
    • /
    • 1997
  • 본 논문에서는 호 수락 제어 문제를 해결하기 위해 퍼지 논리 제어기의 장점과 신경망의 학습 능력을 이용한 ATM 망의 호 수락 제어 시스템을 제안하였다. ATM 망의 새로운 호는 현재 서비스 중인 호의 서비스 품질(QoS : quality of service)이 영향을 받지 않을 경우 망에 접속이 된다. 신경망 호 수락 제어 시스템은 입/출력 패턴의 학습으로 예측성 잇게 호 수락/거절을 하는 시스템이다. 본 논문의 퍼지 신경망 호 수락 제어 시스템에서는 학습 속도 개선을 위해 학습율과 모맨텀 상수에 퍼지 추론을 적용하였다. 이 시스템은 시뮬레이션을 통해 기존의 신경망 방법과 퍼지 신경망 방법에서의 학습 횟수 측정으로 제안 알고리즘의 우수성을 검증하였다. 시뮬레이션 결과 퍼지 학습 규칙에 근거한 퍼지 신경망 CAC(call admission control) 방식이 종래의 신경망 이론에 근거한 CAC 방식보다 학습 속도면에서 약 5배의 속도 향상이 있었다.

  • PDF

신경망이론에 의한 시계열자료의 분석

  • 윤여창;허문열
    • Communications for Statistical Applications and Methods
    • /
    • 제4권1호
    • /
    • pp.91-99
    • /
    • 1997
  • 본 연구에서는 신경망이론을 이용하여 시계열자료를 분석할 때 문제가 되고 있는 초기 가중값을 선정하는 방법을 제시하고자 한다. 기존의 연구에서 학습을 위한 초기 가중값의 결정은 난수에 의존하고 있다. 본 연구에서는 신경망학습의 효율적인 초기값을 선택하기 위하여 제어상자를 이용한다. 그리고 학습과정에서 가중값의 변화를 추적하고 적절한 가중값의 범위를 탐색하면서 새로운 초기값을 제어상자를 통하여 실시간으로 재설정하는 방법을 제시한다.

  • PDF