본 논문은 일반화된 다중 수상돌기 적 (GMDP : Generalized Multi Dendrite Product) 유닛트 신경망을 이용한 PID 적응 위치제어기를 구성하여 직류 서어보 전동기의 위치제어를 실시간 처리 하였다. 제안한 제어기를 위치제어에 적용시켜 실험한 결과 기존의 MLP 신경망 제어기를 이용한 것 보다도 샘플시간을 줄일 수 있다는 장점으로 정밀한 제어 가 가능하다는 것을 확인할 수 있었다. 학습규칙은 기존의 역전파 학습방법이 GMDP 신경 회로망에 적용되었다.
본 연구에서는 실험 실습 가상교육 또는 원격 교육 콘텐츠가 학습 효과를 향상할 수 있는 효과적인 교육 수단으로 인정되고 있으나 원격에서 실험 실습을 하기위한 환경구성의 어려움을 극복을 위한 방안으로 웹 기반의 하드웨어 원격제어 기술을 이용하여, 임베디드 시스템 활용 교육을 위한 가상교육 시스템을 구현 하였다. 본 가상교육 시스템의 구성은 서버 시스템과 학습 시스템으로 되어 있다. 서버 시스템은 컴파일 서버, 원격 실습 서버, 웹 서버, Telnet 서버, 웹 카메라 서버 등으로 구성한다. 학습 시스템은 이론 강의, 가상 실습, 원격 실습의 세 부분으로 구성한다. 본 연구에서 구현한 시스템은 원격지에서의 프로세서 실습 환경을 제공하기 위해 웹에서 동작하는 Telnet 클라이언트를 제작하여 임베디드 하드웨어를 제어한다. 또한 이론학습 과정을 별도로 구성하고, 원격제어가 불가능한 개발환경 구축 과정은 가상 실습으로 학습하게 하였다. 이러한 점을 활용하여 임베디드 시스템의 효율적인 학습이 가능하다.
시간 및 주파수 특성 분석이 용이한 웨이블릿을 신경회로망에 적용시킨 웨이블릿 신경 회로망의 파라미터 학습 방법에는 오차 역전파 알고리듬 및 유선 알고리듬 등 여러 가지 방법이 있으나 이러한 학습 방법들은 수렴 시간이 오래 걸리는 단점을 가진다. 따라서 본 논문에서는 웨이블릿 신경 회로망의 최적 파라미터를 결정하기 위한 학습 방법으로 일반적으로 비선형 시스템 추정에 주로 사용되는 확장 칼만 필터 알고리듬을 적용한 신경회로망을 제안한다. 또한 제안된 학습 알고리듬을 이용한 웨이블릿 신경 회로망으로 간접 적응 제어기를 설계하여 연속 시간 혼돈 시스템인 Duffing 시스템의 제어에 적용함으로써 확장 칼만 필터 학습 알고리듬을 적용한 웨이블릿 신경 회로망 모델의 우수성을 보인다.
최근에 인공지능 분야에서는, 국내외적으로 강화학습(reinforcement learning)에 관한 관심이 크게 증폭되고 있다. 강화학습의 최근 경향을 살펴보면, 크게 가치함수를 직접 활용하는 방법(value function-based methods), 제어 전략에 대한 탐색을 활용하는 방법(policy search methods), 그리고 액터-크리틱 방법(actor-critic methods)의 세가지 방향으로 발전하고 있음을 알 수 있다. 본 논문에서는 이중 세 번째 부류인 액터-크리틱 방법 중 NAC(natural actor-critic) 기법의 한 종류인 RLS-NAC(recursive least-squares based natural actor-critic) 알고리즘을 다양한 트레이스 감쇠계수를 사용하여 연속제어입력(real-valued control inputs)으로 제어되는 Kimura의 기는 로봇에 대해 적용해보고, 그 성능을 기존의 SGA(stochastic gradient ascent) 알고리즘을 이용하여 학습한 경우와 비교해보도록 한다.
본 논문에서는 개선된 유전자 알고리즘과 역전파 신경망 알고리즘의 특징을 살펴보고, 비선형 모의자료를 이용하여 개선된 유전자 알고리즘 기반의 신경망 학습 효과와 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 비교해 본다. 유전자 알고리즘을 이용한 신경망 학습에는 개선된 신경망 제어기를 이용한다. 역전파 알고리즘을 이용한 신경망 학습에는 일반화 성능향상을 위한 인자들의 결합효과를 이용한다. 모의실험을 통하여 두 가지의 학습에서 학습 수령의 정도와 학습 속도 등을 비교하는 모의실험 결과를 개선된 유전자 알고리즘과 신경망 알고리즘의 학습 결과와 항께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 개선된 신경망 제어기를 통한 학습 결과가 일반 신경망 학습 결과보다 초기 가중값을 작은 범위에서 발생시킬 때 수렴 정확도 및 학습 속도에서 좋은 결과를 나타내 주고 있다.
인터넷의 비약적인 발달은 제어시스템의 설계 및 운영에도 많은 영향을 미치게 되어 지금까지와는 전혀 다른 시스템 구현이 가능한 환경으로 만들어 가고 있다. 이와 같은 배경에서 본 연구에서는 LabVIEW를 이용한 복합 공정의 제어 및 모니터링을 Web을 기반으로 한 새로운 방법의 원격제어 시스템을 사용하여 가상실험실을 구현하였다. LS산전의 GLOFA-GM3와 미쓰비시의 MELSEC-Q PLC를 각각 TCP/IP와 RS-232C통신을 사용하여 복합공정 제어 시스템을 구현하였다. NI사의 LabVIEW 프로그램에서 지원하는 Web 출판 기능을 사용하여 웹상에서 50대의 Clint PC의 접속을 가능하게 하여 원격으로 접속, 학습이 가능하도록 가상실험실을 구현하였으며 학습자들은 원격으로 복합 제어공정을 실시간으로 학습할 수 있게 되었다. 나아가 Web 상에서 원격제어의 가능성을 활용하여 산업체에서의 활용범위를 넓히고, 가상 교육환경의 가능성을 열었다.
본 논문에서는 PD 제어기와 신경회로망을 이용하여 3상 유도전동기의 속도제어 시스템을 구현하고자 한다. PD 제어기는 초기의 제어를 담당하며 신경회로망의 초기 학습을 담당한다. 또한, 신경회로망은 비선형 매핑능력과 학습능력이 탁월하기 때문에 제어기로 많이 사용되며 특히 전향경로 신경망은 구조가 매우 간단하기 때문에 본 논문에서는 이를 이용하여 유도전동기의 속도제어 시스템에 구현하였다. 신경회로망의 입력으로는 모터의 기준속도, 엔코더를 이용하여 측정한 모터의 실제 속도와 제어입력 전류를 이용하였고, 온라인 상태로 학습되도록 하였다. 본 논문에서 제안된 알고리즘의 타당성을 보이기 위해 기존에 널리 사용되었던 PI 제어기와 비교평가를 하였으며 시뮬레이션과 실험결과로부터 초기운전 상태에서는 PD 제어기가 주로 제어를 담당하지만 시간이 지남에 따라 신경회로망이 학습되어 신경회로망이 주 제어기가 됨을 확인하였다. 아울러, 제안된 하이브리드 제어기가 PI 제어기보다 우수하고 특히 부하변동과 같은 외란에 강인함을 알 수 있었으며, 정상상태 오차가 현저히 감소하여 정밀한 속도제어가 가능함을 확인하였다.
인간이 교육을 통해 지식을 습득하고 발전시키는 과정에서, 이전 단계에서의 학습 진행 과정은 향후 학습에 영향을 미친다. 이것은 기계 학습에서도 고려되어야 할 사항으로 실제 기계 학습에서 학습순서의 제어가 어떤 효과가 있는지 살펴볼 필요가 있다. 본 연구에서는 MLP의 학습에서 지도자가 목표값을 알려주는 역할은 물론, 학습 대상의 지식 정도를 고려하여 자료들의 학습 순서를 제어하는 추가적 역할도 수행할 때, 학습 과정에 미치는 효과를 실험한다. 실험 방법은 SOM과 MLP를 이용하여 분류 문제에 적용한다. SOM은 지도자가 학습 순서를 결정하기 위한 학습 자료들의 범주화에 이용되고, MLP는 학습 대상이 된다. 제안하는 방법은 SOM을 학습 자료의 전처리 방법이 아닌, 학습 과정 동안 학습 자료의 선택에 이용하는 점에서 여타 연구들과 차이가 있으며, 실험 결과는 학습에 사용되는 자료의 수와 학습 횟수에서 개선 효과가 있음을 보여준다.
본 논문에서는 호 수락 제어 문제를 해결하기 위해 퍼지 논리 제어기의 장점과 신경망의 학습 능력을 이용한 ATM 망의 호 수락 제어 시스템을 제안하였다. ATM 망의 새로운 호는 현재 서비스 중인 호의 서비스 품질(QoS : quality of service)이 영향을 받지 않을 경우 망에 접속이 된다. 신경망 호 수락 제어 시스템은 입/출력 패턴의 학습으로 예측성 잇게 호 수락/거절을 하는 시스템이다. 본 논문의 퍼지 신경망 호 수락 제어 시스템에서는 학습 속도 개선을 위해 학습율과 모맨텀 상수에 퍼지 추론을 적용하였다. 이 시스템은 시뮬레이션을 통해 기존의 신경망 방법과 퍼지 신경망 방법에서의 학습 횟수 측정으로 제안 알고리즘의 우수성을 검증하였다. 시뮬레이션 결과 퍼지 학습 규칙에 근거한 퍼지 신경망 CAC(call admission control) 방식이 종래의 신경망 이론에 근거한 CAC 방식보다 학습 속도면에서 약 5배의 속도 향상이 있었다.
Communications for Statistical Applications and Methods
/
제4권1호
/
pp.91-99
/
1997
본 연구에서는 신경망이론을 이용하여 시계열자료를 분석할 때 문제가 되고 있는 초기 가중값을 선정하는 방법을 제시하고자 한다. 기존의 연구에서 학습을 위한 초기 가중값의 결정은 난수에 의존하고 있다. 본 연구에서는 신경망학습의 효율적인 초기값을 선택하기 위하여 제어상자를 이용한다. 그리고 학습과정에서 가중값의 변화를 추적하고 적절한 가중값의 범위를 탐색하면서 새로운 초기값을 제어상자를 통하여 실시간으로 재설정하는 방법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.