최근의 인터넷환경은 다양한 형태의 가상 및 원격 교육이 가능한 기반을 제공하고 있으며, 대학 및 교육기관에서는 이를 활용한 새로운 교육용 도구의 개발이 활발히 이루어지고 있다. 본 논문은 시공간의 제약 없이 실험을 수행할 수 있도록 하여 학습자들에게 반복 학습이 가능하도록 하였고, 유량제어를 실현 할 수 있는 비선형 시스템의 이중탱크 기구를 이용하여 다양한 제어이론을 실험할 수 있는 웹기반 실험실을 구현하였다. 전체 시스템은 SISO 시스템과 MIMO 시스템을 학습자가 선택하여 실험할 수 있도록 하였다. 유량제어 방식은 수동, PID, FUZZY 제어로 실험할 수 있도록 하여 학습자들에게 여러 가지 제어이론을 다양하게 학습할 수 있도록 구성하였으며, 릴레이 자기 동조법을 구현하여 학습자들로 하여금 PID변수를 확인할수 있도록 하였다. 또한 Web-Cam을 통하여 실험화면을 실시간으로 확인하면서 시뮬레이션을 동시에 실행하여 비교할 수 있도록 구현하였다.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.40
no.2
/
pp.19-25
/
2003
For a class of multi-input multi-output nonlinear systems which perform a given task repetitively, an extended type of a direct leaning control (DLC) is proposed using the information on the (vector) relative degree of a multi-input multi-output system. Existing DLC methods are observed to be applied to a limited class of systems with the relative degree one and a new DLC law is suggested which can be applied to systems having higher relative degree. Using the proposed control law, the control input corresponding to the new desired output trajectory is synthesized directly based on the control inputs obtained from the learning process for other output trajectories. To show the validity and the performance of the proposed DLC, simulations are performed for trajectory tracking control of a two-axis SCARA robot.
Proceedings of the Korea Society for Industrial Systems Conference
/
2006.05a
/
pp.211-217
/
2006
The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the teaming control field was teaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.
Journal of Korea Society of Industrial Information Systems
/
v.11
no.2
/
pp.40-47
/
2006
The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work the authors presented an iterative precision of linear decentralized learning control based on p-integrated teaming method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the loaming control field was learning in robots doing repetitive tasks such as on a]1 assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
1999.05a
/
pp.370-374
/
1999
The proposed algorithm used the Hybrid teaming rule in the input and hidden layer, and Back-Propagation teaming rule in the hidden and output layer. From the results of simulation of tracking control with one link manipulator as a plant, we verify the usefulness of the proposed control method to compare with common direct adaptive neural network control method; proposed hybrid teaming rule showed faster loaming time faster settling time than the direct adaptive neural network using Back-propagation algorithm. Usefulness of the proposed control method is that it is faster the learning time and settling time than common direct adaptive neural network control method.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1997.11a
/
pp.176-179
/
1997
본 논문은 입/출력 관계가 불명확한 가전제품 제어에 인공신경회로망을 응용하여 지능형 제어기를 구현하는 방법에 관한 것이다. 다층신경회로망을 사용하고 Error Back Propagation 학습방법에 의하여 학습되도록 한다. 제어대상물에서 알 수 있는 정보는 입력값과 이에 대응하는 출력값 뿐이며 입력과 출력에 대한 관계를 수학적으로 모델링하기 어려운 경우이다. 인공신경회로망을 이용한 제어를 위하여 Neural Network Emulator(NNE)와 Neural Network Controller(NNC)가 개발되며 각 신경회로망의 초기하중백터는 제어대상에 오프라인 학습으로 결정하고, 자동조절과정에서 온라인 학습하여 새로운 대상제품 상황에 적응하도록 설계되었다. 제안된 지능형 제어시스템은 PC를 이용하여 실시스템에 적용하여 검토되었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.289-295
/
1998
본 논문은 빠른 학습과 정확한 근사 능력을 갖는 새로운 CMAC 신경망 기반 퍼지 제어기르 제안한다. 제안한 CMAC 신경망 기반 퍼지 제어기(CBFLC)는 한 학습 주기 동안 전향 및 역전파 연산시 신경망내 유닛중 극히 일부분만이 활성화되어 학습에 참가하므로 학습 시간이 매우 빠르고, 비퍼지화 연산시 소속 함수의 중심값 뿐 아니라 폭을 동시에 고려하여 정확한 근사화를 얻는다. 제안한 퍼지 제어기내 입?출력 소속 함수의 중심값 및 폭 등의 구조적 파라메터들은 역전파 알고리즘에 의해 갱신된다. 제안한 CMAC 신경망 기반 퍼지 제어기를 트럭 후진 주차문제에 적용하여 근사화 능력 및 제어 성능면에서 여러 다른 퍼지 제어기들과 비교한다.
Journal of Korea Society of Industrial Information Systems
/
v.3
no.1
/
pp.183-191
/
1998
다양한 산업분야의 생산공장에서 주로 활용되고 있는 6축 수직다관절로보트는 대부분 단순반복운동을 하고 있다. 단순반복중 point-to-point제어보다 품질을 요하는 tracking-to-trajectory 제어를 위한 분산학습제어에 대하여 연구하고자 한다. 관련 학습제어기법으로는 선형누적형기법과 간접적응기법이 있다. 두기법의 차이는 시스템 정보의 유무이며, 시스템의 주어진 상황에 따라 두 기법중 하나를 선택할 수 있다. 간접적응형 기법은 zero tracking error를 보장받기 위해서 보다 많은 반복을 요하는 경비를 부담하여야 한다.
Proceedings of the Korea Society for Industrial Systems Conference
/
1998.03a
/
pp.125-128
/
1998
다양한 산업분야의 생산공장에서 주로 활용되고 있는 6축 수직다관절보트은 대부분 단순반복운동을 하고 있다. 단순반복중 point-to-point제어보다 품질을 요하는 tracking -to-trajectory제어를 위한 분산학습제어에 대하여 연구하고자 한다. 관련 학습제어기법으로는 선형누적기법과 간접적응기법이 있다. 두 기법의 차이는 시스템의 정보의 유무이며 시스템의 주어진상황에 따라 두 기법중 하나를 선택할 수 있다. 간접적응형 기법은 zero tracking error를 보장받기 위해서 보다 많은 반복을 요하는 경비를 부담하여야 한다.
With advances in autonomous vehicles and networked control, there is a growing interest in the consensus control of a multi-agents system to control multi-agents with distributed control beyond the control of a single agent. Since consensus control is a distributed control, it is bound to have delay in a practical system. In addition, it is often difficult to have a very accurate mathematical model for a system. Even though a reinforcement learning (RL) method was developed to deal with these issues, it often experiences slow convergence in the presence of large uncertainties. Thus, we propose a slide RL which combines the sliding mode control with RL to be robust to the uncertainties. The structure of a sliding mode control is introduced to the action in RL while an auxiliary sliding variable is included in the state information. Numerical simulation results show that the slide RL provides comparable performance to the model-based consensus control in the presence of unknown time-varying delay and disturbance while outperforming existing state-of-the-art RL-based consensus algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.