• Title/Summary/Keyword: 학습 제어

Search Result 1,238, Processing Time 0.025 seconds

Design and Implementaion of Web-based Remote Control Laboratory Using Water-level Control of Coupled Tank Apparatus (이중 탱크의 수위제어 기구를 이용한 Web기반 원격 제어 실험실의 설계 및 구현)

  • Hong, Sang-Eun;Park, Sung-Moo;Kim, Yong-Rae;Sung, Jung-Kun;Oh, Sang-Yeol
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.325-328
    • /
    • 2010
  • 최근의 인터넷환경은 다양한 형태의 가상 및 원격 교육이 가능한 기반을 제공하고 있으며, 대학 및 교육기관에서는 이를 활용한 새로운 교육용 도구의 개발이 활발히 이루어지고 있다. 본 논문은 시공간의 제약 없이 실험을 수행할 수 있도록 하여 학습자들에게 반복 학습이 가능하도록 하였고, 유량제어를 실현 할 수 있는 비선형 시스템의 이중탱크 기구를 이용하여 다양한 제어이론을 실험할 수 있는 웹기반 실험실을 구현하였다. 전체 시스템은 SISO 시스템과 MIMO 시스템을 학습자가 선택하여 실험할 수 있도록 하였다. 유량제어 방식은 수동, PID, FUZZY 제어로 실험할 수 있도록 하여 학습자들에게 여러 가지 제어이론을 다양하게 학습할 수 있도록 구성하였으며, 릴레이 자기 동조법을 구현하여 학습자들로 하여금 PID변수를 확인할수 있도록 하였다. 또한 Web-Cam을 통하여 실험화면을 실시간으로 확인하면서 시뮬레이션을 동시에 실행하여 비교할 수 있도록 구현하였다.

  • PDF

Direct Learning Control for a Class of Multi-Input Multi-Output Nonlinear Systems (다입력 다출력 비선형시스템에 대한 직접학습제어)

  • 안현식
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.2
    • /
    • pp.19-25
    • /
    • 2003
  • For a class of multi-input multi-output nonlinear systems which perform a given task repetitively, an extended type of a direct leaning control (DLC) is proposed using the information on the (vector) relative degree of a multi-input multi-output system. Existing DLC methods are observed to be applied to a limited class of systems with the relative degree one and a new DLC law is suggested which can be applied to systems having higher relative degree. Using the proposed control law, the control input corresponding to the new desired output trajectory is synthesized directly based on the control inputs obtained from the learning process for other output trajectories. To show the validity and the performance of the proposed DLC, simulations are performed for trajectory tracking control of a two-axis SCARA robot.

Indirect Adaptive Decentralized Learning Control based Error Wave Propagation of the Vertical Multiple Dynamic Systems (수직다물체시스템의 오차파형전달방식 간접적응형 분산학습제어)

  • Lee Soo-Cheol
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.211-217
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the teaming control field was teaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF

Quality Assurance of Repeatability for the Vertical Multiple Dynamic Systems in Indirect Adaptive Decentralized Learning Control based Error wave Propagation (오차파형전달방식 간접적응형 분산학습제어 알고리즘을 적용한 수직다물체시스템의 반복정밀도 보증)

  • Lee Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.2
    • /
    • pp.40-47
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work the authors presented an iterative precision of linear decentralized learning control based on p-integrated teaming method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the loaming control field was learning in robots doing repetitive tasks such as on a]1 assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF

Control Method using Neural Network of Hybrid Learning Rule (혼합형 학습규칙 신경 회로망을 이용한 제어 방식)

  • 임중규;이현관;권성훈;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.370-374
    • /
    • 1999
  • The proposed algorithm used the Hybrid teaming rule in the input and hidden layer, and Back-Propagation teaming rule in the hidden and output layer. From the results of simulation of tracking control with one link manipulator as a plant, we verify the usefulness of the proposed control method to compare with common direct adaptive neural network control method; proposed hybrid teaming rule showed faster loaming time faster settling time than the direct adaptive neural network using Back-propagation algorithm. Usefulness of the proposed control method is that it is faster the learning time and settling time than common direct adaptive neural network control method.

  • PDF

An Application of Neural Network for Intelligent Control of Home Appliances (가전제품의 지능형 제어를 위한 신경회로망 응용)

  • 이승구;윤상철;김주완
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.176-179
    • /
    • 1997
  • 본 논문은 입/출력 관계가 불명확한 가전제품 제어에 인공신경회로망을 응용하여 지능형 제어기를 구현하는 방법에 관한 것이다. 다층신경회로망을 사용하고 Error Back Propagation 학습방법에 의하여 학습되도록 한다. 제어대상물에서 알 수 있는 정보는 입력값과 이에 대응하는 출력값 뿐이며 입력과 출력에 대한 관계를 수학적으로 모델링하기 어려운 경우이다. 인공신경회로망을 이용한 제어를 위하여 Neural Network Emulator(NNE)와 Neural Network Controller(NNC)가 개발되며 각 신경회로망의 초기하중백터는 제어대상에 오프라인 학습으로 결정하고, 자동조절과정에서 온라인 학습하여 새로운 대상제품 상황에 적응하도록 설계되었다. 제안된 지능형 제어시스템은 PC를 이용하여 실시스템에 적용하여 검토되었다.

  • PDF

A Design of the CMAC-based Fuzzy Logic Controller with an Accurate Approximation Ability (정확한 근사화 능력을 갖는 CMAC 신경망 기반 퍼지 제어기의 설계)

  • 김대진;이한별
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.289-295
    • /
    • 1998
  • 본 논문은 빠른 학습과 정확한 근사 능력을 갖는 새로운 CMAC 신경망 기반 퍼지 제어기르 제안한다. 제안한 CMAC 신경망 기반 퍼지 제어기(CBFLC)는 한 학습 주기 동안 전향 및 역전파 연산시 신경망내 유닛중 극히 일부분만이 활성화되어 학습에 참가하므로 학습 시간이 매우 빠르고, 비퍼지화 연산시 소속 함수의 중심값 뿐 아니라 폭을 동시에 고려하여 정확한 근사화를 얻는다. 제안한 퍼지 제어기내 입?출력 소속 함수의 중심값 및 폭 등의 구조적 파라메터들은 역전파 알고리즘에 의해 갱신된다. 제안한 CMAC 신경망 기반 퍼지 제어기를 트럭 후진 주차문제에 적용하여 근사화 능력 및 제어 성능면에서 여러 다른 퍼지 제어기들과 비교한다.

  • PDF

6축다관절 로봇 동력분산학습제어

  • 이수철
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.3 no.1
    • /
    • pp.183-191
    • /
    • 1998
  • 다양한 산업분야의 생산공장에서 주로 활용되고 있는 6축 수직다관절로보트는 대부분 단순반복운동을 하고 있다. 단순반복중 point-to-point제어보다 품질을 요하는 tracking-to-trajectory 제어를 위한 분산학습제어에 대하여 연구하고자 한다. 관련 학습제어기법으로는 선형누적형기법과 간접적응기법이 있다. 두기법의 차이는 시스템 정보의 유무이며, 시스템의 주어진 상황에 따라 두 기법중 하나를 선택할 수 있다. 간접적응형 기법은 zero tracking error를 보장받기 위해서 보다 많은 반복을 요하는 경비를 부담하여야 한다.

6축다관절 로봇 동력분산학습제어

  • 이수철
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1998.03a
    • /
    • pp.125-128
    • /
    • 1998
  • 다양한 산업분야의 생산공장에서 주로 활용되고 있는 6축 수직다관절보트은 대부분 단순반복운동을 하고 있다. 단순반복중 point-to-point제어보다 품질을 요하는 tracking -to-trajectory제어를 위한 분산학습제어에 대하여 연구하고자 한다. 관련 학습제어기법으로는 선형누적기법과 간접적응기법이 있다. 두 기법의 차이는 시스템의 정보의 유무이며 시스템의 주어진상황에 따라 두 기법중 하나를 선택할 수 있다. 간접적응형 기법은 zero tracking error를 보장받기 위해서 보다 많은 반복을 요하는 경비를 부담하여야 한다.

A slide reinforcement learning for the consensus of a multi-agents system (다중 에이전트 시스템의 컨센서스를 위한 슬라이딩 기법 강화학습)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.226-234
    • /
    • 2022
  • With advances in autonomous vehicles and networked control, there is a growing interest in the consensus control of a multi-agents system to control multi-agents with distributed control beyond the control of a single agent. Since consensus control is a distributed control, it is bound to have delay in a practical system. In addition, it is often difficult to have a very accurate mathematical model for a system. Even though a reinforcement learning (RL) method was developed to deal with these issues, it often experiences slow convergence in the presence of large uncertainties. Thus, we propose a slide RL which combines the sliding mode control with RL to be robust to the uncertainties. The structure of a sliding mode control is introduced to the action in RL while an auxiliary sliding variable is included in the state information. Numerical simulation results show that the slide RL provides comparable performance to the model-based consensus control in the presence of unknown time-varying delay and disturbance while outperforming existing state-of-the-art RL-based consensus algorithms.