• 제목/요약/키워드: 학습 데이터 모델

검색결과 3,103건 처리시간 0.033초

거대언어모델에 대한 원자력 안전조치 용어 적용 가능성 평가 (A Training Feasibility Evaluation of Nuclear Safeguards Terms for the Large Language Model (LLM))

  • 윤성호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.479-480
    • /
    • 2024
  • 본 논문에서는 원자력 안전조치 용어를 미세조정(fine tuning) 알고리즘을 활용해 추가 학습한 공개 거대 언어모델(Large Language Model, LLM)이 안전조치 관련 질문에 대해 답변한 결과를 정성적으로 평가하였다. 평가 결과, 학습 데이터 범위 내 질문에 대해 학습 모델은 기반 모델 답변에 추가 학습 데이터를 활용한 낮은 수준의 추론을 수행한 답변을 출력하였다. 평가 결과를 통해 추가 학습 개선 방향을 도출하였으며 저비용 전문 분야 언어 모델 구축에 활용할 수 있을 것으로 보인다.

  • PDF

TAPAS를 이용한 사전학습 언어 모델 기반의 표 질의응답 (Table Question Answering based on Pre-trained Language Model using TAPAS)

  • 조상현;김민호;권혁철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.87-90
    • /
    • 2020
  • 표 질의응답은 반-정형화된 표 데이터에서 질문에 대한 답을 찾는 문제이다. 본 연구에서는 한국어 표 질의응답을 위한 표 데이터에 적합한 TAPAS를 이용한 언어모델 사전학습 방법과 표에서 정답이 있는 셀을 예측하고 선택된 셀에서 정확한 정답의 경계를 예측하기 위한 표 질의응답 모형을 제안한다. 표 사전학습을 위해서 약 10만 개의 표 데이터를 활용했으며, 텍스트 데이터에 사전학습된 BERT 모델을 이용하여 TAPAS를 사전학습한 모델이 가장 좋은 성능을 보였다. 기계독해 모델을 적용했을 때 EM 46.8%, F1 63.8%로 텍스트 텍스트에 사전학습된 모델로 파인튜닝한 것과 비교하여 EM 6.7%, F1 12.9% 향상된 것을 보였다. 표 질의응답 모델의 경우 TAPAS를 통해 생성된 임베딩을 이용하여 행과 열의 임베딩을 추출하고 TAPAS 임베딩, 행과 열의 임베딩을 결합하여 기계독해 모델을 적용했을 때 EM 63.6%, F1 76.0%의 성능을 보였다.

  • PDF

ARIMA 모델을 이용한 데이터 흐름 예측 기법 (Data Flow Prediction Scheme using ARIMA Model)

  • 김동현;김민우;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.141-142
    • /
    • 2018
  • 기존 데이터의 패턴 예측에는 통계를 기반으로 한 수학적 모델이 주로 사용되었으나 새로운 데이터에 대한 피드백이 부족하기 때문에 장기간의 데이터 예측에 한계가 있다. 또한 데이터의 특성이 다양하고 복잡한 경우에는 수학적 모델의 결합 및 계산과정이 어려워진다. 따라서 본 논문에서는 데이터의 학습 및 예측에 기존 정적 모델이 아닌 기계학습 중 시계열 데이터 분석 (Time Series Analysis) 을 기반으로 연구를 진행하였다. 기계학습은 복잡한 특성을 가진 데이터를 학습하여 미래의 데이터 값을 예측하거나 분류하는데 있어서 정확도 및 처리시간 측면에서의 성능을 향상시킬 수 있다.

  • PDF

협력학습 지원을 위한 에이전트 간의 의사소통 데이터 모델에 관한 연구 (The Study about Agent to Agent Communication Data Model for e-Learning)

  • 한태인
    • 전자공학회논문지CI
    • /
    • 제48권3호
    • /
    • pp.36-45
    • /
    • 2011
  • 소셜러닝의 대표적 학습인 협력학습에서의 에이전트란 학습자에게 현황이든, 환경이든, 과제이든 설명해 줄 수 있거나, 보편적이고 일반적인 방법으로 독립적인 기능을 수행할 수 있는 것이다, 이를 위해서는 에이전트 사이에서의 의사소통에 관한 정보기술 표준화 방법이 요구된다. 본 연구는 협력학습에서 사용되는 각종 에이전트들의 의사소통에 관한 데이터 모델에 관한 기술을 제시한다. 따라서 이러닝 협력학습 환경을 지원하는 많은 에이전트들의 유형을 파악하고, 이 에이전트들 간의 상호 의사소통에 관한 규칙을 갖는 데이터 모델을 설계하여 그 요소들을 정의하고자 한다. 이렇게 제시된 표준화된 데이터 모델을 기반으로 하는 다중 에이전트 시스템은 여러 응용 에이전트가 독립된 프로세스로 활동할 수 있도록 정의된 통신 데이터모델에 의해 메시지 상호 교환이 가능해진다. 본 연구는 소셜러닝에서 주를 이루는 학습방법인 협력학습 중에서 다양한 에이전트를 활용하는 경우 이를 지원하는 에이전트간의 통신에 관한 의사소통 모델 응용을 통해 원활한 협력학습이 구현되도록 기여할 것으로 기대한다.

연합 학습 환경에서의 랜덤 포레스트 알고리즘 최적화 전략 연구 (Research on Optimization Strategies for Random Forest Algorithms in Federated Learning Environments)

  • 송인서;이강윤
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.101-113
    • /
    • 2024
  • 연합 학습은 분산 환경에서 데이터 프라이버시와 보안을 유지하면서 효율적으로 머신러닝 모델을 학습하는 방법으로 주목받고 있다. 본 연구에서는 이러한 연합 학습 환경에서 랜덤 포레스트 모델의 성능을 최적화하기 위해 새로운 FedRFBagging 알고리즘을 제안한다. 클라이언트별 데이터 특성에 기반하여 로컬 랜덤 포레스트 모델의 트리를 동적으로 조정함으로써 통신 비용을 줄이고, 다수의 클라이언트 환경에서도 높은 예측 정확도를 달성할 수 있다. 제안하는 방법은 다양한 데이터 조건에 적응하여 모델의 안정성과 학습 속도를 크게 향상시킨다. 랜덤 포레스트 모델은 여러 개의 결정 트리로 구성되나, 연합 학습 환경에서 모든 트리를 서버로 전송하면 통신 오버헤드가 기하급수적으로 증가하여 사용이 어려워진다. 또한 클라이언트 간 데이터 분포의 차이로 인해 트리의 품질 불균형이 발생할 수 있다. 이를 해결하기 위해 FedRFBagging 알고리즘을 제안하며 이는 각 클라이언트에서 성능이 높은 트리만을 선택해 서버로 전송하고, 서버는 불순도 값을 기준으로 트리들을 선택하여 최적의 글로벌 모델을 구성한다. 이를 통해 통신 오버헤드를 줄이고 다양한 데이터 분포에서도 높은 예측 성능을 유지할 수 있다. 글로벌 모델은 다양한 클라이언트 데이터를 반영하지만, 각 클라이언트의 데이터 특성은 다를 수 있다. 이를 보완하기 위해 클라이언트는 글로벌 모델에 추가 트리를 학습하여 로컬 데이터에 맞춘 최적화를 수행한다. 이를 통해 전체 모델의 예측 정확도를 높이고 변화하는 데이터 분포에 적응할 수 있다. 본 연구는 연합 학습 환경에서 랜덤 포레스트 모델이 가지는 통신 비용과 성능 문제를 효과적으로 해결하여 적용 가능한 연합 학습 환경에서 랜덤 포레스트 모델을 위한 알고리즘임을 시사한다.

터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과 (Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection)

  • 이규범;신휴성
    • 한국터널지하공간학회 논문집
    • /
    • 제21권3호
    • /
    • pp.419-432
    • /
    • 2019
  • 대부분 딥러닝 모델의 학습은 입력값과 입력값에 따른 출력값이 포함된 레이블링 데이터(labeling data)를 학습하는 지도 학습(supervised learning)으로 진행된다. 레이블링 데이터는 인간이 직접 제작하므로 데이터의 정확도가 높다는 장점이 있지만 비용과 시간의 문제로 인해 데이터의 확보에 많은 노력이 소요된다. 그리고 지도 학습의 목표는 정탐지 데이터(true positive data)의 인식 성능 향상에 초점이 맞추어져 있으며, 오탐지 데이터(false positive data)의 발생에 대한 대처는 미흡한 실정이다. 본 논문은 터널 관제센터에 투입된 딥러닝 모델 기반 영상유고 시스템의 모니터링을 통해 정탐지와 레이블링 데이터의 학습으로 예측하기 힘든 오탐지의 발생을 확인하였다. 오탐지의 유형은 작업차량의 경광등, 터널 입구부에서 반사되는 햇빛, 차선과 차량의 일부에서 발생하는 길쭉한 검은 음영 등이 화재와 보행자로 오탐지되고 있었다. 이러한 문제를 해결하기 위해 현장에서 발생한 오탐지 데이터와 레이블링 데이터를 동시에 학습하여 딥러닝 모델을 개발하였으며, 그 결과 기존 레이블링 데이터만 학습한 모델과 비교하면 레이블링 데이터에 대한 재추론 성능이 향상됨을 알 수 있었다. 그리고 오탐지 데이터에 대한 재추론을 한 결과 오탐지 데이터를 많이 포함하여 학습한 모델일 경우 보행자의 오탐지 개수가 훨씬 줄었으며, 오탐지 데이터의 학습을 통해 딥러닝 모델의 현장 적용성을 향상시킬 수 있었다.

블록체인 기반 연합학습을 위한 레퍼런스 아키텍처 (A Reference Architecture for Blockchain-based Federated Learning)

  • 고은수;문종현;이광기;손채봉
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.119-122
    • /
    • 2022
  • 연합학습은, 데이터 샘플을 보유하는 다수의 분산 에지 디바이스 또는 서버들이 원본 데이터를 공유하지 않고 기계학습 문제를 해결하기 위해 협력하는 기술로서, 각 클라이언트는 소유한 원본 데이터를 로컬모델 학습에만 사용함으로써, 데이터 소유자의 프라이버시를 보호하고, 데이터 소유 및 활용의 파편화 문제를 해결할 수 있다. 연합학습을 위해서는 통계적 이질성 및 시스템적 이질성 문제 해결이 필수적이며, 인공지능 모델 정확도와 시스템 성능을 향상하기 위한 다양한 연구가 진행되고 있다. 최근, 중앙서버 의존형 연합학습의 문제점을 극복하고, 데이터 무결성 및 추적성과 데이터 소유자 및 연합학습 참여자에게 보상을 효과적으로 제공하기 위한, 블록체인 융합 연합학습기술이 주목받고 있다. 본 연구에서는 이더리움 기반 블록체인 인프라와 호환되는 연합학습 레퍼런스 아키텍처를 정의 및 구현하고, 해당 아키텍처의 실용성과 확장성을 검증하기 위하여 대표적인 연합학습 알고리즘과 데이터셋에 대한 실험을 수행하였다.

  • PDF

현업 서비스를 위한 도메인 수준 학습 방법을 활용한 지식 기반 대화생성 (Knowledge-grounded Dialogue Generation Using Domain-level Learning Approach for Practical Services)

  • 임채균;정영섭;옥창원;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.619-623
    • /
    • 2022
  • 대화생성은 대규모 학습 데이터로부터 사전 학습된 언어모델을 활용한 도전적인 다운스트림 태스크 중 하나이다. 대화에서 특정한 지식에 대한 맥락이 보존된 응답 문장을 생성하기 위한 기술의 일환으로써 지식 기반 대화생성이 연구되고 있으며, 현업에서는 사업목표에 따른 대화 서비스를 제공하는 목적으로 이러한 기술을 적용할 수 있다. 본 논문에서는, 각각의 서비스 도메인에 특화된 모델을 적절히 활용 가능하도록 전체 데이터를 도메인별로 구분하여 학습한 다수의 대화생성 모델을 구축한다. 또한, 특정 도메인의 데이터로 학습된 모델이 나머지 도메인에서 어떤 수준의 대화생성이 가능한지 비교 분석함으로써 개별 학습된 모델들이 도메인의 특성에 따라 서로 다른 영향력이나 연관성을 나타낼 가능성을 확인한다. 이러한 실험적인 분석 결과를 바탕으로 현업의 서비스에서 개별 도메인에 특화된 모델이 적절히 활용하는 것이 유용함을 확인하고자 한다.

  • PDF

사전학습 전략과 딥러닝을 활용한 분자의 특성 예측 (Molecular Property Prediction with Deep-learning and Pretraining Strategy)

  • 이승범;김지예;김동우;박재식;안성수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.63-66
    • /
    • 2022
  • 본 논문에서는 분자의 특성을 정확하게 예측하기 위해 효과적인 사전학습(pretraining) 전략과 트랜스포머(Transformer) 모델을 활용한 방법을 제시한다. 딥러닝을 활용한 분자의 성능을 예측하는 연구는 그동안 레이블이 부족한 분자데이터의 특성에 의해 학습 때 사용된 데이터이외의 분자데이터에 대해 일반화 능력이 떨어지는 어려움을 겪었다. 이 논문에서 제시한 모델은 사전학습(pretraining)을 수행할 때 자기지도학습(self-supervised training)을 사용하여 부족한 레이블에 의한 문제점을 피할 수 있다. 대규모 분자 데이터셋으로부터 학습된 이 모델은 4가지 다운스트림 데이터셋에 대해 모두 우수한 성능을 보여주어 일반화 성능이 뛰어나며 효과적인 분자표현을 얻을 수 있음을 보인다.

  • PDF

학습분석을 위한 교수학습활동 데이터 모델 연구 (Data Model Study of Teaching-Learning Activities for Learning analysis)

  • 김경록;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.672-673
    • /
    • 2015
  • 교수학습에서 발생하는 다양한 데이터를 분석하고 이를 바탕으로 학습자를 이해하기 위한 학습 분석에 대한 연구가 증가하고 있다. 그러나 교수학습지원시스템에서 생성되는 데이터는 다양한 형식으로 이를 결합하고 통합하기 위해서는 표준화된 사용 메타데이터가 필요하다. 이에 본 논문에서는 학습자 관점에서 교수학습 활동 중심의 데이터 모델을 제안한다. 이는 학습자의 학습양식을 바탕으로 학습 이벤트가 발생할 때 참여 활동한 데이터를 표현하기 위한 것이다. 이를 통해 학습자의 특성을 식별하고 학습활동에 참여 정도를 파악하여 학습자를 지원하기 위한 것이다.